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Formation of radially and azimuthally polarized light using space-variant
subwavelength metal stripe gratings
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We present a unique method for converting circularly polarized light into radially and azimuthally
polarized beams. The method is based on the use of computer-generated space-variant
subwavelength metal stripe gratings. The elements were realized on GaAs substrates and produced
beams with high polarization purity at a wavelength of 10r6. As a result of the conversion, the
beams also undergo space-variant phase modification, which has an effect on their propagation. We
demonstrate the effect experimentally, and calculate it using full space-variant polarization and
phase analysis based on rigorous coupled-wave analysis and Jones calcul@01 @merican
Institute of Physics.[DOI: 10.1063/1.1401091

Radial and azimuthal polarized beams possess a higl I por
degree of symmetry, which has lead to their exploitation for\\__L_// \\ //' SIS /‘/‘_’ :
improving such applications as particle accelerdtiand -7," S TS N ,

atom trapping, optical tweezers, material proces$iagd 3 t\' :\\ ,,: ! \ l
tight focusing® In the past, such beams were created by in—/)“ \ ‘7 ~ \\“ \\ //L \\ /
terferometically combining two linearly polarized laser \ /[\ < ‘ /f/

beams or by intracavity coherent summation of two or-

thogonally polarized TEN, modes> Unfortunately, these @ (b) © @
methods are SomeWhat_ Cumbersom'e and .I"eqUIre a h'gh d@l’G. 1. In-phase radiala) and azimuthal(c) polarization as opposed to
gree of coherence and interferometric stability. antiphase radialb) and azimuthald) polarization.

In this letter, we present a method for forming azimuthal

anq radial polarized light using. compu_ter—generated' SPaCirection. This is as opposed to the fields in Figé)land
variant subwavelength metal stripe gratings. Our design proyq) or \which the electric fields at opposite sides of the
cedure, ZVh'Ch is based on rigorous coupled-wave analysigycje are antiphase. At any given instance they possess the
(RCWA),” enables absolute control of the local azimuthalgy e magnitude and are oriented in opposite directions. Due

angle of the transmitted beam, thus enabling us to achievg, e symmetry of the beams, it is clear that the dark center

high space-variant polarization purity. Furthermore, OUryf the antiphase polarization is conserved during propaga-

methqd ensures the _continuity of the grating,. thgreby gualgon, as opposed to the in-phase polarization, which can be

anteelmg the continuity of the electromagnetic field of theexpected to display a bright center in the far field. Both types

resulting beam. of polarization can be produced by use of space-variant sub-
. We show that when a wave front undergoes such mag,yelength metal stripe gratings and appropriate phase ele-

nipulation it is also subject to space-variant phase mOd'f'Cafnents.

tion, which can be used to form either axially symmetric 506 yariant subwavelength metal stripe gratings are

in-phase polarization for which the far-field image exhibits atypically described by a grating vector,

bright center, or axially symmetric antiphase polarization for

which the far field exhibits a dark center. We demonstrate _ o ; P

these effects experimentally by converting circularly polar- Kg=Ko(r,6)cog A(r, )]+ Ko(r, )i A(1, 6)]6, (1)

ized CQ, laser radiation at a wavelength of 10N iNt0  \yhere 7 and ¢ are unit vectors in polar coordinatek,

both _radlglly and a2|muthally polarized beams, which We_5/A(r,0) is the local spatial frequency for a grating of

examine in the near ar_ld far fields. We also performed a fl,“local periodA (r, 6), and3(r, 6) is the local direction of the

space-variant polarization and phase analysis of the resulting,c(or chosen so that it is perpendicular to the metal stripes.

beams based on RCWA and Jones calclilus. When the period of the grating is much smaller than the

‘Figure 1 illustrates in-phasgFigs. 1a) and Xc)] and  jncigent wavelength, then only light polarized perpendicular

antiphasgFigs. 1b) and 1d)] radial and azimuthal polariza- 4 the wires is transmitted, and the resulting beam is linearly

tion, with continuous electromagnetic fields. In Figsd)l ,o|arized. However, as the period of the grating increases the

and Xc), the fields at opposite sides of the center aré ingyiinction ratio decreases. Therefore, if we assume incident

phase, and at any given instance the electric fields at thosgcyjarly polarized light, the transmitted wave front will not

points are of equal magnitude and are oriented in the samganerally be linearly polarized but rather possess elliptic po-

larization, with the azimuthal angle of the ellipse at a period-
dElectronic mail: zbomzy@tx.technion.ac.il dependent angle\ (K,) to the grating vectdt. Conse-
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quently, in order to obtain a local azimuthal angle of
Ygesired I - 0), the grating angle must be chosen so that

B(rve):lﬂdesire({ra0)_A¢(K0(r:0))- (2)

Note thatA ¢(Ky) not only depends on the period of the

grating but also on other parameters such as the structure ( T

duty cycle and the substrate on which the grating has been

constructed and can be calculated numerically using RCWA. |8
We applied Eq(2) to the design of gratings for convert-

ing circular polarization into radially and azimuthall olar- FIG. 2. Experimental intensity distributions for the radi@)—(d)] and azi-
9 P y yp uthal[(e)—(h)] polarizations directly after the grating<a) and(e)] after

ized beams. We demonstrate the design for producing radi%lissing a polarizer oriented verticallip) and (f)] after passing a polarizer
polarization, i.e.,igesired™0. Applying this to Eqs(l) and  oriented at 45°[(c) and(g)] after passing a polarizer oriented horizontally,
(2), and then requiring thd‘Kg is a conserving vector, i.e., and[(fj) and(h)] after passing a horizontal4 plate and a polarizer oriented
VX K,=0 leads to the self-containing differential equation 3 4°"

for the radial element,

Yaesired ', 0) at all points. The performance of the grating is,

i —rKa(r.0)sim A (Ka(r. 6 therefore, limited only by the accuracy of the fabrication
ﬁr{ 0( ’ ) r{ dj( O( ' ))]}
process.
J We realized Lee-typebinary metal stripe gratings for
— —{Ko(r,0)cog Ay(Ko(r,0))]} =0, (3)  forming radial and azimuthal polarization. First, chrome
a0

masks of the gratings were fabricated using high-resolution

from which Ky(r,6) can be determined. By requiring that laser lithography. These masks were then transferred onto a
the grating vector be a conserving vector, we not only guarsemi-insulating GaAs wafer 500m thick using photolithog-
antee that the polarization of the resulting beam is continuraphy, and the metal stripes were realized using a lift-off
ous, but also ensure that the electromagnetic field defined kygchnique. The metal stripes consisted of a 10 nm adhesion
its local polarization and phase is continuous, thereby elimitayer of Ti, and 60 nm of Au. Finally, an antireflection coat-
nating diffraction associated with discontinuity of the waveing was applied to the backside of the wafer. For the radial
front. element we chosey=5 mm and A;g=2 um, so that 3.3

Solving Eq.(3) by separation of variables, and by requir- mm<r <5 mm and 2um<A<3.2 um, and for the azimuthal
ing thatKo(r, #) is real, we find that the period is indepen- element they were,=2.4 mm andA,=2 um, so that 2.4
dent of ¢ and thatk(r) can be found from the transcenden- mm<r <5 mm and 2um<A<3.16 um. The geometry of the

tal equation gratings was designed so that the maximum period does not
. exceed the Wood anomaly in GaAs.
Ko(r)=Ko(ro) fo w (4) In order to test the polarization of the beam transmitted

rsifAg(Ko(r))] through the gratings, we illuminated them with circularly
wherer, and Ko(ro)=2m/A, are constants of integration polarized light at a wavelength of 106n from a CQ laser,

that determine the geometry and local period of the gratingd"d made four measurements of the transmitted intensity.
Using RCWA, we calculated ¢(K,) for a grating whose The measurements for both the radial and azimuthal polar-
metal stripes consisted of 70 nm of gold on a GaAs substrat&ations are displayed in Fig. 2. The first three were made
with a duty cycle of 0.5, and then numerically solved E). after passing the light through a polarizer oriented vertically
using this function. Note that we experimentally verified thelFigs. 22) and 2e)], diagonally at 45{Figs. 2b) and 2f)]
calculation ofA#(Ko) in our previous lettef.Once Eq.(4) ~ and horizontally{Figs. c) and 2g)], and the fourth mea-
had been solved, we found grating functign defined so ~ surement involved passing the light through a quarter-wave
that Vé=K, by integratingK, along an arbitrary path to plate with its fast axis at 0° and then through a polarizer at

yield 45° [Figs. 2d) and Zh)]. The intensity measurements were
. computed by imaging the grating through a lens onto a Spiri-
@(r,0)=Ko(ro)rosinAg(Ko(ro))] con Pyrocaml pyroelectric camera, and the arrows in the
retg[ Ag(Ko(r'))] pictures indicate the transmission axis of the polarizer for
f P dr'+0;. (5) each measurement. The four measurements were then used

to calculate the Stokes parametel%;,S;,S,,S;),’ for each

Continuity of this function requires thatg(r,6) point on the resulting beam, from which the local ellipticity
=¢(r,0+27)=27m (m is an integer and therefore, and azimuthal angle were obtained as, tg)2S,/S; and
Ko(ro)rosimAy(Ko(ro))] must be an integer, placing a re- sin(2\)=$;/S,. The average deviation of this angle from
straint on the choice afy andK(r,). The equations for the #qesiea Was 9.8° and the average ellipticity fam was
azimuthal grating can be found by applying the same proce=0.12, leading to an overall polarization purity of 95.7%.
dure with qesireq= /2. It is important to state that an accu- For the azimuthal element we achieved a deviation from
rate solution of Eqsi4) and(5) will result in a grating which  #gesireq Of 5.5° and an average ellipticity of tgp=—0.1,
will convert circular polarization into a space-variant polar-leading to a polarization purity of 98.2%. The deviation from

ized beam for which the local azimuthal angle is exactlythe desired polarization results mainly from an increase in
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J " Calculation of the space-variant Pancharatnam phase for the
beam resulting directly from our grating shows that along
such curves of equal ellipticityp= §— tan Y[sin(2y)tan(6)],

. which is equal to the area of the geodesic triangle on the
Poincare sphere defined by the pélee initial circular po-
larization, by E(r, #) and byE(R,0), and therefore, equal to
the geometrical phase acquired by a beam projected through

Pancharatnam phase, (radian/x)
r — .
g .

5

E

1

W/—@\\ a closed loop defined by these poitftslhe phase increases
ol - ot i““mgﬁ J linearly until #=m/2, where it rises sharply byr. It then
: =y | continues to slowly increase unt=37/2, at which an ad-
—— in-phase, - - - anti-phase (x = -0.1) ditional sharp rise occurs. The phase betwé&#n,6) and

~—~ BEHfeCL i lidae, -~ (Rriect atiphase (=01 E(r,6+ ) is 2 and the beam is in phase. When the beam is

multiplied by e™'?, we find that the phase is close to zero
when —7/2<0</2, after which the phase suddenly jumps
FIG. 3. Calculated Pancharatnam phase for in-phase and antiphase rad@y 7. The Pancharatnam phase between points at opposite
polarization formed with the computer-generated grating, as well as thesides of the center is now, and the beam is antiphase. We

phases expected from a perfect radial polarizer. The insights are thre%ote that for both in-phase and antiphase perfect polarizers
dimensional phase distributions of the in-phase and antiphase polarization

as well as an illustration of the geometry of the grating for forming radial fX_’O)’ _the_ phase jumps apruptly a=7l2, CaUSing a dis-
polarization. continuity in the phase function, whereas for our choice,of
(x=—0.1rad, this transition is fast but smooth. The smooth-
i L i . . ing of the phase results from the nonzero ellipticity of the
the duty cycle during fabrication, which caused a deviationy. o\ cmitted beam.
of Ay(Ko) from what was expected. , __In order to verify that the beam was in phase, we mea-
It remains to determine whether the resulting beam is in, o4 the far-field image of the beam transmitted through the
phase, as in Fig.(&), or antiphase, as in Fig(l). Todo this, g ating. The far field exhibited a clear bright spot, indicating
we calculated the theoretical transmitted beam using a full, o+ the beam was in phase. We then converted the polariza-
space-variant polarization and phase analysis method basggd,, (o antiphase by use of a spiral phase element, with a

on RCWA and Jones calculgs. The grating is represented hﬁfhase function exp-if(xy)] (Ref. 11 placed after the wire
a space-variant Jones matrix, whose elements are CaICUIat‘EjPating. In this case, we observed a dark spot at the center of

at each point using RCWA. Once this matrix has been calye peam, clearly indicative of the antiphase radial symmetry.

culated the resulting wave front can be found for any inCi-yye ai50 obtained similar results for the azimuthal polariza-
dent polarization. From here, we then calculated the spacg;,,,

variant Pancharatnam phadssed on the rule proposed by
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