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1 introduction

Computer-generated diffractive optical elements {DOEs)
can be formed so they behave as very sophisticated optical
elements.! For practical optical systems, the DOEs must
have high diffraction efficiency. The high efficiency can be
obtained by resorting to phase rather than absorptive DOEs,

where the phase DOEs are recorded as an etched relief

pattern on a substrate. The recording can be performed by
means of lithographic techniques, which are used in micro-
electronics. When coating the relief pattern with a reflective
metallic layer, a reflective phase DOE is obtained. When
the relief pattern is in a transparent material, a transmittive
phase DOE is obtained.

In 1967 Jordan et al.2? suggested blazed relief patterns,
namely kinoforms, to obtain 100% diffraction efficiencies.
The relief height of the kinoforms are proportional to phase
residues after modulo 27, so their phase variations range
from O to 2. Unfortunately, it is difficult to directly record
general kinoforms having variable periods and properly
shaped blazed grooves. Consequently, in practice, it is nec-
essary to approximate the ideal blazed shape of the grooves
with multileve] discrete binary phase levels.* The diffrac-
tion efficiency of such approximated kinoforms depends on
the shape and the height of every level, where for best
efficiency the level height must be varied according to the
period of the grating and the angle of the incident beamn.’
For DOEs having differing periods, e.g., high-numerical-
aperture diffractive lenses, it is not possible to arbitrarily
change the height of the individual level, because they are
etched simultaneously all over the entire element. Conse-
quently, the overall diffraction efficiency for such DOEs is
relatively low. Moreover, by utilizing conventional design
methods, it is difficult to independently vary the phase and
the amplitude of the ontput wavefront, as is sometimes nec-
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essary for some applications such as matched filtering and
subdiffraction limited focusing lenses.®

To obtain independent control of the phase and the am-
plitude, it is possible to exploit a combination of two ele-
ments, one of which controls the phase and the other the
ampiimde,T Such a combination, however, requires difficult
alignment and recording techniques. Alternatively, two
phase-only elements can be used to obtain independent
control of the phase and the amplitude of a wavefront by a
method called optical coordinate transformation.® This
method achieves high efficiency, but again requires difficult
alignment and necessitates a relatively large distance be-
tween the two phase elements. Thus, single DOEs, with
phase-only functions, are generally used to approximate
those with the required complex functions.” Other solu-
tions, developed by Brown and Lohmann'® and Lee! in-
volve the control of the diffraction efficiency to change the
amplitude and the phase of the output wavefront. But this
solution is suitable for binary DOEs only, where the dif-
fraction efficiency cannot exceed 40.5%.

In this work, we present a novel approach for efficiency
optimization by changing the number and width of the lev-
els in every period of a single multilevel DOE, and by
ensuring that the number of levels needed to record the
element is minimized. This approach can be extended to
allow for independent variation of the phase and the ampli-
mde distribution of the output wavefront, while at the same
time controlling the diffraction efficiency from 0 to 100%.
A relation for the diffraction efficiency of multilevel dif-
fractive elements, which takes into account all the limita-
tions imposed by the realization procedure, is derived. This
relation is then exploited for obtaining an algorithm that
determines relevant parameters of the DOE, such as the
number of levels per each period and the height of each
level. These parameters are then used for designing the
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Fig. 1 Profile of a transmission blazed grating

masks that are needed for producing the DOE. The new
approach is illustrated by designing and evaluating two dif-
ferent DOEs. In one, the improvement of diffraction effi-
ciency is evaluated with computer simulations. In the other,
a multilevel DOE is designed and recorded, and then ex-
perimentally evaluated to show independent control of the
phase and the amplitude of the output wavefront.

2 Multilevel DOEs—Theoretical Considerations

We present blazed and multilevel DOEs and derive the dif-
fraction efficiency relations for these under certain relevant
conditions. These telations are applicable to both fransmis-
sion and reflecion DOEs.

2.1 Basic Considerations

We begin by considering a conventional blazed DOE, as
shown in Fig. 1. The incident beam is both refracted and

diffracted by the DOE at an angle of 8. When the angle of

each periodic tooth is € assuming normal incidence and a
surrounding medium of unit refractive index, then the re-
fraction relation can be written as

n sin {€)=sin (e+86,), 1)

where 6, is the refraction angle corresponding to # in Fig.
1. The diffraction relation is

sin (64)= TK)'\" (2)

where m is the diffraction order and 8, is the diffraction
angle corresponding to #in Fig. 1. Now, when 6, in Eq. (1)
is the same as §; in Eq. (2), i.e., 8,= 8,= 0, then the dif-
fraction efficiency for the m'th order will be 100%. In such
a case, the path difference of rays from the corners of the
vertical edge of each tooth is an integer muitiple of the
wavelength, mX.

The diffraction efficiency of the blazed DOE can be con-
trolled by tilting the profile of some of the DOE teeth, as
shown in Fig. 2. A regular blazed tooth can produce 100%

~ o

Fig. 2 Profile of blazed DOE having diffarent tilts for each tooth: (a)
regular, {b) tit around the center, and (c} tilt around the edge.

Fig. 3 Four-fevel approximations of blazed grooves corresponding
to Fig. 2: {a) regular, {b} tiit around the center, and (¢) Uit around the
edys.

diffraction efficlency in accordance with scalar
approximation.® Any tilt of the profile will reduce the effi-
ciency. This is because the tooth angle € is changed, so the
condition of 8, being equal to 8, is no longer fulfilled.
Modification of the phase and the amplitude of the light can
be achieved independently by varying the period of the
grating A for phase changes and the tilt angle of the tooth
profile e for amplitude changes. When the tilt pivots around
the center of a tooth profile, as shown with tooth profile (b)
in Fig. 2, there will only be amplitude changes but no phase
change. However, when the tilt pivots around the edge of
the tooth profile, as shown with profile {c}, the amplitude
change is accompanied with some undesirable phase
change. This phase change occurs because the average
height of the teeth profile changes when pivoting around
the edge rather then around the center. This phase change
can be compensated for.

In practice, it is difficult to fabricate DOEs with blazed
profiles. Consequently, such profiles are approximated by
multilevel profiles, as shown in Fig. 3. Here are shown
three different quantized (multilevel) blazed teeth corre-
sponding to those shown in Fig. 2. The configuration pre-
sented in Fig. 3, profile (c), is more convenient to realize
than the one presented in Fig. 3, profile (b), because it
requires less levels in every period and the width of the
levels is larger, which results with less complication during
the realization procedure. In the following, we consider the
multilevel DOE in more detail.

2.2 Diffraction Efficiency Relations

We now derive the relation of the diffraction efficiency of
general multilevel DOEs. Representative multilevel tooth
geometry for such DOEs is shown in Fig. 4. The local
period is A; the height of each level is h; and the local
modulation depth {overall height of teeth) is d, running
from zero (no levels) to an optimized height d,p, which
gives 100% diffraction efficiency.’ The angular orientation
of the incident wave is 6 and that of the diffracted wave is
8, .
Rather than start from the wave equations, we begin
with the results that were obtained for a general dielectric
relief grating,“ where the amplitude T, of the wave, in the
m’th diffracted order, can be written as

1 [ )
Tmmx L exp {—i2w[%+ﬂ;—

X{rn; cos 6;—n, cos &)”dx. (3)
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Fig. 4 Geometry of the multilevel DOE. The locat number of levels varies according to the local
modutation depth d, which range between zero (no levels) to dgy.

In Eq. (3), f(x) is the depth profile, x is the lateral coordi-
nate, r; is the refractive index of the surrounding medium,
and n, is the refractive index of the grating medium; for a
reflective grating n,=—n,. The diffraction angle 6, is
found from

. hm -
sin @, =3~ +sin g;. (4)

We now introduce the multilevel quantized function into
Eq. (3), where the multilevel function is approximated with
teeth having the form of the tooth in profile (c) in Fig. 3.
The resulting amplitude of the diffracted wave now be-
comes

1 P=atocargpen)
T, (

ERTREN)
= ex —fa Ty T X
A =0 Jwap P A doptp

A m h
-Z-j exp [wi?,w(——.x-kmpw)}dx. (5)
(A/E)Pman AT don

In Eq. (5), the optimal modulation depth is the height of the
tooth shown in Fig. 4, dgy is

A
d"p‘;rxi cos (8,)—nq cos (6,}°

(6)

the local number of levels £ is the height of each tooth
divided by the height of the levels, written as

d

and p o, is the number of complete levels in every period

Pmax=integer{£}. (8)

For example, in Fig. 4, P, =3 for the smaller tooth and
Poax=£=8 for the large tooth, where d=dp .
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The first term in Eq. (5) represents the amplitude of the
diffracted wave that is contributed by the complete levels in
every period, whereas the second term represents the am-
plitude that is contributed by the last incomplete level.

The exact solution of Eq. (5) yields the diffraction effi-
ciency, assuming a unit amplitude incident beam, as

=|Tnl*= : —i2m ) -1
T =Tl = |57 exp zwf
1-exp [~i2m(&/E)Pmad] N
1—exp [—i2w(d/£)] exp | Tiew
m 3 2
X &~ Prnax) | — 1 [€XP| 5 Prnax ] || (9}
13 £
where the relative modulation variation is
d
= g e e (10)
opt

For a small level height, i.e., h/d <1, we can replace pp;
by £ so Eq. (9) can be simplified to

[ ( m) }1»exp(~f2w6> ¥
exp ""1271'“5 -1 1—exp[ —i2w(8/£)]|

a [sin { wm/ E)sin(w 8)

Im™=

2
: 2

m sin (7 6 E) ] lexp (=imd)[". an
Fquation {11) is an exact solution when the modulation
depth d is the complete sum of a number of level heights.*
If we use, for example, a maximum of 16 levels for every
tooth of the DOE, then the diffraction efficiency given by
the simplified solution of Eq. (11) is within less than 1%
from that given by the exact solution of Eq. (9).

With a DOE in which the teeth pivot around the edge
rather than the center of each tooth, there is a phase shift in
the diffracted wavefront. This shift is evident in the last
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term of Eq. (11). Specifically, when d=d,, is used as a
reference, then an approximated phase shift of the dif
fracted wavefront can be written as

Aﬁf’:fﬁdup,‘" Gg= S, (12)

where §is the reladve modulation variation. Alternatively,
an exact phase shift can be derived numerically from Eq.
(9), with the result being comparable to that of Eq. (12).
When designing DOEs, it is necessary to eliminate such a
phase shift. This is done by modifying the desired phase
Pesiced 10 Obtain a modified phase @ gpeq, in accordance
to

Drodificd™ Pulesired ™ Adg. (13)

It is possible’ to determine the optimal depth of modu-
lation that would maximize the diffraction efficiency for an
entire range of incidence angles and wavelengths, by maxi-
mizing the overall diffraction efficiency £(d). This overall
diffraction efficiency can be written as

E(d):f j @(8; \) (6, \,d)dgd, (14)

where w(6;,\) is the angular and spectral energy distribu-
tion of the incident light and »{#; \) is the diffraction effi-
ciency given by Eq. {11). When the period of the DOE is
small, i.e., A=A, then n(6, ,A) should be calculated by re-
sorting to vectorial calculations.

To obtain an undistorted diffracted wavefront, it is nec-
essary to ensure that all higher orders do not overlap on the
desired (first) order. This can be readily achieved by intro-
ducing a sufficient linear phase to the desired phase of the
diffracted wavefront, so it will be angularly separated from
the other orders.!® Finally, since in practice h is constant,
the diffraction efficiency, given by either Eq. (9) or Eq.
(11), is essentially a function of d only, ie., n,.ld(x,y)].
Thus, by changing 4 it is possible to contrel and optimize
the diffracted efficiency.

2.3 Comparison with Conventional Design Method

It is useful to compare DOEs where profiles are formed in
accordance with our optimization method with those
formed with conventional methods. The basis for compari-
son will be how high a diffraction efficiency can be
achieved with any of the methods. For this comparison, we
consider a reflective focusing DOE that operates with an
off-axis angle to separate the incident and the diffracted
waves. The geometry of such a DOE with the participating
wavefronts is shown in Fig. 5. The incident beam is a plane
wave oriented at an angle 8, with respect to the normal. The
diffracted output wavefront converges to a point, with the
central ray oriented at an angle f, to the normal.

With conventional designs where the modulation depth
is constant over the entire DOE, the modulation depth
variation of the frst diffracted order can be derived in ac-
cordance with Eqgs. (6) and (10) as

s=1 d -1 cos (8;)+cos {8,+A8)
- dopt— cos (@)+cos (6,)

(15)

Fia. 5 Geomaetry of reflecting focusing DOE.

where 6 is the incidence beam angle, 6, is the diffracted
beam angle, and for simplification we consider the dif-
fracted angle at the edge as §,+A#. Here d, is the optimal
modulation depth for 6, and 8, . For #= §;= @, and assum-
ing paraxial conditions, Eq. (15) can be simplified to

5=Ltan (6) sin (A6). (16)

Equation (16) indicates that the modulation depth variation
J increases as the incidence and diffraction angles become
larger and as the numerical aperture becomes larger (nu-
merical aperture is proportional to Af). This implies that
the diffraction efficiency will decrease rapidly. As an ex-
ample, consider a focusing element with f/4#=1.5, a maxi-
mum of 16 levels in every period, and #=45 deg. For these
parameters the modulation depth error is 15% at the edge,
with a corresponding reduction of diffraction efficiency by
8%. With our method, on the other hand, the modulation
depth variation & is zero, but the number of levels in each
period is altered. When the same parameters of the preced-
ing example are introduced into Eq. {9), the resulting re-
duction in diffraction efficiency is only 0.5%.

The diffraction efficiency as a function of the lateral
coordinate along a reflective focusing DOE is shown in Fig,
6. The results are for DOFEs that are formed in accordance
with conventional methods and those that are formed by
our optimized method. The parameters were the same as
those used in the example before, except that #=40 deg for
one DOE and #=30 deg for the other. As is evident, the
diffraction efficiency reduction for the DOEs formed con-
ventionally is significantly greater than the corresponding
DOEs formed in accordance with our optimization method.
The height of every level was kept constant in every ele-
ment and was equal to the larpest modulation depth in the
element divided by 16. Note that if the number of levels
were greater than 16, the reduction of diffraction efficiency
for the optimized DOE will be even smaller, while at the
same time no significant efficiency change in the conven-
tional elements will occur.

3 Design Procedure

In the fabrication of the multlevel DOEs, several
computer-generated masks are exploited. We describe how
these masks are designed.

Opfical Engineering, Vol. 35 No. 9, Seplember 1996 2558
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optimized 50
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500
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Fig. 6 Dlffraction efficlency as a function of distance from center of conventionat and optimized re-
flecting focusing DOEs at incidence angles of 40 and 50 deg.

3.1 Design Parameters

In multilevel DOES, it is best to minimize the number of
levels, but still retain the high diffraction efficiencies. Such
minimization results in decreasing the fabrication errors
and thereby reduce the scatter noise, as well as in stmpli-
fying the recording procedure. To determine the parameters
of the masks that are needed to fabricate a DOE with a
minimum number of levels, we begin with Eq. (11). When
the number of levels in each period does not depend on the
relative modulation variation [i.e., £(&)=const), then the
maximal efficiency in Eq. (11) occurs at &x,y)=0. Thus,
d=d,y. Letting the height h of each level be a free param-
eter, Eq. (11) simplifies to

sin (w/N")]?
ﬂi(xvy)x w s (17)
where
dopl X,
N(xy)=apl3:3) = w,;%%%)- (18)

For any desired 7,(x,y) and a certain dgy, [see Eq. 631,
it is possible to derive from Eq. (17) [or from Eq. (9) for
the nonapproximated case] the height h(x,y) of the levels
at each location of the DOE. In practice, it is extremely
difficult to form DOEs having variable level beights. Con-
sequently, we determine the smallest level height, Ay, in
the entire DOE, and set all levels in the element to be of
that height. At the coordinates of this Ay, the desired
efficiency 7, can be achieved. At other locations, &x,y)
must be increased to obtain the desired efficiencies there.
OFf course, it is possible to choose a lower value for  in
and still obtain the desired efficiency. But a lower value
implies that the number of levels must be increased, and
thereby increasing the recording complexity.

Now, by using A, Egs. (7) and (10} with Eq. (9) or
Eg. (11), we obtain that the diffraction 7, is solely a func-
tion of &x,y). We thus choose the highest possible £(x.y)
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for the entire element, and use it to determine the pumber
of masks M, and thereby the highest number of levels
that are needed. This is done in accordance to the inequality

WM vz Nz £ > 2M e ™1, (19)

where M, and Ng are integers, representing the number
of masks needed for the element and the maximal number
of levels in every period. Finally, the maximal modulation
depth dg, when using M, masks with h;, as step height,
is found from

do=Nohpig - (20)

The preceding procedure can be summarized with the
following steps:

1. Let 5=0, then from Eq. (17) or Eq. (9), get A(x,y)-

7. Find the lowest k(x,y) for the entire element, to get
B i -

3. Now, let §#0, h=h_y,, and d=h £, then from Eq.
(9) or Eq. (11), find & x,¥).

4. Find the maximum &x,y) for the entire element 10
get & -

5. Use Eqs. (19) and (20) to find Ny, dy, and Mo,

3.2 Design of the Masks

The amplitude transmittance for the M’th mask with con-
stant modulation depth of 2, can be written as

T=t{sin (k¢)}, (21)
where ¢ is the phase of the DOE,

. _ 1 for x>0
T=tx}=1y  for x=<0’

and
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fe=2M1

The modulation depth can be changed so as to obtain dif-
fering diffraction efficiencies by using that phase part of the
grating function that remains after removing the modulus of
2. Specifically, the overall phase of the grating function is

$=2wN,+R, (22)

where N, is an integer, and the remainder R is R=mod(&/
27). Substituting Eq. (22) into Eq. (21), yields

T=t{sin (k¢)}=1t{sin (k27N +kR)}=1{sin (kR)}.
(23)

When the modulation depth d differs from the maximal
dy, it is necessary to modify R in accordance with

d
R—+R . 24
dg
Then the transmittance of the M'th mask given by Eq. (23)
becomes

e ) 2]

(23)

The modification that leads to Eq. (25) introduces distor-
tions to the transmittance 7 of the mask when d/dy#1.
This distortion is readily evident when we consider, for
example, a linear grating, and plot the argument of £ as a
function of the x coordinate before and after modification.
Such plots are shown in Fig. 7; for these x=¢f2n and
M =1. Figure 7(a) depicts the unmodified argument plotted
in accordance to Eq. (21) with d/dy=1. Figure 7(b) depicts
the modified argument plotted in accordance to Eq. (25)
with d/dy=0.85 (chosen arbitrarily). As evident from these
plots, the sinusoidal shape is distorted, where the duty cycle
g is changed from g=1/2 to some modified value.

3.3 Fabrication Errors and Compensation

For the fabrication of computer-generated DOEs conven-
tional lithographic techniques are exploited. In our experi-
ments, these involved wet etching of a photoresist layer as
well as of a substrate layer to form the desired surface
profile. This wet etching typically increases the width at the
top of the etched layers and changes the shape from straight
edge walls to sloped walls, as illustrated in Fig. 8.

To correct for such an error, which is introduced by the
etching, it is best to reduce the width of the etched level by
decreasing the open regions in the mask that are used for
exposing the photoresist. Mathematically, this can be rep-
resented by an increase of the duty cycle, as

1 Ax 1 |V &
anw“—“‘Iuid'}'Aqm'i'i'Tmi'{“A-x T (26)

where [V¢|=|d¢/dx|, Ax is the width of the error intro-
duced by the first mask (M =1), and g =1/2 the duty cycle
in the original mask. The compensated duty cycle of Eq.

14
o 5«/\ /
-+ ' ' X
-0 0. 1
~0/86
-14
(a)
1
035 /\ /
x L X
-0.5 a5 |
.5
oA

(b}

Fig. 7 Argument of t in Eq. (25) as a function of the displacement in
DOE with linear phase: {a) unmodified argument d/dy=1 and (b}
modified argument d/dy,=085

(26) is now introduced into Eg. (25), along with the addi-
tion of a bias term sin [#(d/dy)Ag]. This yields

d o+ (wAg2"™ N wAg
Y M-1 -
T t[sm (2 dﬂ{modl " AT
d
+sin (WmAq)], (27)
do

where Ag=Ax(|Vgi/2m).

Plots of the argument of 7 in Eq. (27) as a function of x,
where x= /2, for M=1 and M =2, are shown in Fig. 9.
These plots correspond to that shown in Fig. 7. As is evi-
dent, the regions that are used for etching are now nar-
rower.

— = —  Oplimal level

Feal etching

— - s

Proposad compensated etching shape

Fig. 8 Wet etching during photolithography Intraduces distortions.
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(a)

N\

T

(b)

Fig. 8 Argument { in Eq. {27} as a function of displacement with
compensalion for etching errars: (a) first mask m=1 and {b) second
mask m=2.

>

4 Experimental Procedure and Results

We illustrate how to independently vary the amplitude and
phase of the wavefront that emerges from a DOE. For this
illustration, we designed and recorded a cylindrical DOE
and then evaluated its performance.

Incident  light
»-

3

NN,

4.1 Design and Hecording of a Cylindrical DOE

To verify our design method in which we can indepen-
dently control the amplitude and the phase of the output
wavefront, we designed, recorded, and tested a cylindrical
DOE. The phase function of this DOE depends on one
spatial coordinate only, say, y, and it is so designed to
create a cylindrical wavefront that converges to a line along
the x axis at the focal plane. The phase function, namely
grating function, can be written as

b= 2T [P+ P ), 28

where F is the focal length of the DOE. The DOE together
with the incident plane wave and converging output wave-
front are shown in Fig. 10.

We designed the DOE so that the intensity along the line
at the focus increases linearly. To control the intensity of
the output wavefront, we first followed the procedure de-
scribed in Sec. 3.1 to determine the needed level height.
Then, we used Eq. (9) to find the modulation depth d{x,y)
at every location of the DOE, so as to yield the desired
linear intensity distribution. We modified the phase because
of changes introduced by the modulation change. Finally,
both ¢(x,y) and d(x,y) were substituted into Eq. (27) to
obtain the mask transmittance that was used for recording
the DOE. To obtain high diffraction efficiency, we used
four masks that can result in, at most, 16 levels per each
period of the DOE. Representative magnified sections of
the central parts in the four masks are shown in Fig. 11.
These indicate that the fringes need not be continuous, as is
usually for other design methods. Moreover, as we move
along the x axis, the element has more levels in every pe-
riod while the periodicity along the x axis remains.

For the recording of the DOE we exploited conventional
lithographic techniques with wet chemical etching for
transforming the mask data onto a GaAs substrate. The
finest resolution that was obtained with our equipment was
about 3 pm. The size of the final DOE was 30X30 mm and
its focal length was 240 mm. Figure 12 shows profilometer
scans of three different locations of the recorded DOE that
have about the same period. As evident, the height of every
level is indeed constant regardless of location, while the

\:Ocal line

Fig. 10 Geometry of the incident and output wavefronts from a cylindrical DOE.
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Mask ! sk 2 Mk 3 Magk ¢
_— = e
B e W j

__._M\;___\;_\%\:_%N%\

Flg. 11 Central sections of the masks used to fabricate the rmuti-
level DOE.

number of levels is different. The difference in the number
of levels arises from the fact that the modulation depth is
varied, As shown, the width of the last level in each period
may not necessarily be equal to the other level widths, so

1 pmfdiv

{a) r’ ke _ ORI

(c)

{00 pmAdiv

Fig. 12 Profilometer scanning of three different focations of the el-
ement, which has the same periodicity. The level height Is constant
all over the element, while the variation in modulation depth causes
varlation In local number of levels. The last level {the lower step in
evaery periad) Is not always complete so the local number of steps is
not an Integer. (a} Profile 1: number of levels: 3.4; efficiency: 0.06
{b) Proflie 2: number of levels: 7.75; efficiency: 0.39. (c) Profite 3:
rumber of levels: 13.6; efficiency: 0.87.

Fig. 13 Thermal imaging of the intensity distribution at the focus

the number of levels in every period may not be an integer.
With each scan in Fig. 12, we also indicate the diffraction
efficiency #, that was calculated for the specific modula-
tion depth. As expected, the diffraction efficiency increases
as the modulation depth becomes longer.

4.2 Experimental Arrangements and Results

The experimental arrangement for evaluating the perfor-
mance of the DOE was comprised of a CO, laser, & beam
expander and collimator, and a detection system. The light
emitted from the CO, laser, at 10.6 pm, was expanded and
collimated, and the resulting plane wave illuminated the
entire DOE. This light converged to a line at the focus of
the DOE. At the focal plane we first detected the entire line
with a thermal camera. This enabled us to obtain a qualita-
tive measure of the intensity distribution at the focus. To
obtain a quantitative measure of the intensity distribution,
we added, at the focal plane, a slit that was translated by a
stepper motor, and collected the light, that passed through
the glit at each location, onto a thermal detector.

The results of these experiments are shown in Figs. 13
and 14. The results for Fig. 13 were obtained with the ther-
mal camera and show the qualitative intensity distribution
at the focus. It is interesting to note that the intensities of
the other diffraction orders, including the zero order, are
very weak and not observable with the thermal camera.
Figure 14 shows the quantitative measurements with the
scanned slit and thermal detector. As is evident, the inten-
sity distribution along the focus is indeed linear, as ex-
pected. Deviation from linearity at the high intensity levels
is attributed to diffraction at the edges of the DOE.

We also performed an experiment to measure the power
in each of the detectable diffraction orders. These included
—~1, 0, +1, and +2 diffraction orders. In this experiment,
we used the direct narrow beam from the CO, laser (about
1 mm in diameter) to illuminate a small region of the DOE
with high intensity. In this way, we could readily separate
the varous diffracted orders. The illuminatien beam was
moved along the x direction of the DOE, and at every
1-mm displacement we measured the power in each of the
relevant diffraction orders.

The predicted and experimental results for the power in
four diffraction orders are presented in Figs. 15 and 16. The
predicted results, shown in Fig. 15, were calculated in ac-
cordance with Eq. (11). As is evident, the powers are
mainly in the zero and first diffraction orders. Figure 16
shows the corresponding experimental measurements. As is
evident, these are in agreement with the calculated results.
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Fig. 14 Measured intensity distribution along the line at the focus
plane.

The maximal normalized power at the edge of the element
was 0.89, which is only 0.08 less than predicted. This re-
duction is attributed to lithographic errors such as misalign-
ment of the masks and etch depth errors. The deviations
from linearity are caused by local scattering and nonunifor-
mities in the DOE, which were averaged and smoothened
when the entire element was illuminated.
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Fig. 15 Predicted power in the diffracted orders as a function of the
y coordinate of the cylindrical DOE. The power is distributed mainly
in the first and second orders.

2564 Optical Engineering, Vol. 35 No. 8, September 1996

, { | ! ! i
t order
0 order 1s

0B — B
T
g
o006 — B
(=8
=]
&4 d
= 04 -1 order 2nd order
£
[w]
Zop — B

n-—-"‘""_'nh
0 I I | | ] B
o 5 10 15 20 25 ao

X coordinate

Fig. 16 Measured power in the diffracted orders as a function of the
y coordinate of the eylindrical DOE.

5 Concluding Remarks

This investigation introduced and evaluated, both with
computer simulations and experimentally, a novel design
method for optimizing the diffraction efficiency of multi-
level DOEs. The optimization was achieved by changing
the number and width of the levels in every period of the
DOE and by ensuring that the number of levels needed to
record the elements is minimized. The result of these inves-
tigations can lead to sophisticated and efficient DOEs that
could be in incorporated into applications hitherto impos-
sible.
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