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Abstract

A method for efficiently converting a Gaussian beam into a helical Laguerre–Gaussian (LG) beam is presented. It is

based on using a pair of axicons to produce a shifted-Gaussian (doughnut) intensity distribution that is then passed

through a spiral phase element. It is shown that the conversion efficiency can be as high as �98%, and the calculated
far-field intensity distributions of the output beams are very close to those of corresponding pure LG intensity

distributions. The principle of the method, the needed optical arrangement, and calculated and experimental results are

presented. � 2002 Elsevier Science B.V. All rights reserved.

PACS: 41.85.Ct; 41.85.Ew; 42.60.Jf
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1. Introduction

In recent years, the formation of laser beams
with phase singularities has attracted considerable
interest [1–15]. Typically, the field of such beams is
helical (or spiral) with an azimuthal angular de-
pendence given by expðil/Þ. Helical laser beams
have been exploited for trapping of atoms and
macroscopic particles [2,3], focusing of atomic
beams [4], transferring of orbital angular momen-

tum to macroscopic objects [1,5,6], rotational fre-
quency shifting [7], mode transformation with
non-linear frequency doubling [8], and switching
helicities as a means of information processing [9].
The helical field distribution can be described in

terms of non-degenerate (p,l) Laguerre–Gaussian
(LG) modes, as

ULG
p;l ðr;/Þ ¼ U0 q

jlj=2Ljlj
p ðqÞ expð�q=2Þ

� expðil/Þ; ð1Þ

where r and / are the cylindrical coordinates,
q ¼ 2r2=w2, the waist w is the radius for which the
Gaussian term falls to 1/e of its on-axis value, and
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Ljlj
p are the generalized Laguerre polynomials of
order p and index l. The index l may be positive or
negative, and the modes of opposite l lead to op-
posite helical phase having the same radial inten-
sity distribution. In general, the intensity
distribution of the LG ðp; lÞ mode will have a
circularly symmetric annular shape.
Laguerre–Gaussian high order modes can be

generated inside a laser cavity, so the output beam
will have a helical field distribution. For example,
circular symmetric (0, 1), (0, 2) and (0, 3) doughnut
helical modes where produced by coherent intra-
cavity coupling and recombination of two non-
helical modes (produced by suitably selected
absorbers and apertures inside the resonator) [10].
Specific helical modes can be selected by inserting
of spiral phase elements (SPE) into the laser cavity
[11]. It is also possible to convert a high-order
Hermite–Gaussian mode of indices m and n into a
pure LG mode with p ¼ minðm; nÞ and l ¼ m� n.
This was done with two cylindrical lenses and
appropriate use of the Gouy phase shift [6].
Alternatively, a helical beam can be obtained

directly from a Gaussian one, outside the laser
cavity, by means of computer-generated holo-
grams [12,13] and SPE [14,15]. However, the re-
sulting helical beam is not pure, whereby it
contains a superposition of different LG modes; it
was reported that the power contains less than
80% of the desired helical mode power, whereas
the rest of the power is in other high order LG
modes [12–15].
The purity of the LG beams is of high impor-

tance, because the intensity pattern of a pure free-
space mode does not change as it propagates. In
contrast to this, the intensity distribution of a
beam composed of several modes, does change as
it propagates. This may be of particular impor-
tance in optical fiber communication systems
where high-order modes are used, for example, for
chromatic dispersion compensation, and undesired
modes must be strongly suppressed. For such ap-
plications, the LG beams of lower purity, such as
those produced with the aid of holograms, are
inadequate. Moreover, with holograms, it is nec-
essary to limit the intensity of the beams, because
of the low damage threshold of holographic ma-
terials.

With SPEs, the degradation in the efficiency of
conversion from a Gaussian to a desired helical
beam is due to the different intensity distributions.
Specifically, the efficiency increases as the differ-
ence in the intensity distributions of the original
and desired helical beam decreases. The principle
of reshaping intensity before applying a phase
correction to produce a desired field, have being
exploited in a wide range of contexts [16].
In this paper we determine the conditions for

obtaining the highest possible efficiency for con-
verting a normal Gaussian beam directly to a de-
sired helical one, with the aid of SPEs. In addition,
we develop a new method in which we obtain even
higher conversion efficiency. In this method, the
Gaussian beam is first converted to a ‘‘shifted-
Gaussian’’ (doughnut) beam, and thereafter to a
desired helical beam with the aid of SPE. The
method is validated with a series of experiments to
obtain helical beams having the distribution of LG
(0, 1) and (0, 2) modes. The theoretical and ex-
perimental procedures and results are presented in
the following sections.

2. Conversion efficiency

A common technique for obtaining a beam with
a desired helicity is to start with the fundamental
Gaussian beam and convert it to a helical one by
means of phase element with desired expðil/Þ he-
licity. Unfortunately, the field distribution of the
resultant beam does not represent a pure mode.
Specifically, the helical LG modes ULG

pl form a
complete set of functions, whose expansion coef-
ficients are

C00;pl ¼
R R

ULG�
pl expðil/ÞULG

00 d/rdr

2p
ffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiR
ðULG

pl Þ�ULG
pl rdr

R
ðULG

00 Þ2rdr
q : ð2Þ

The relative weight of the specific LG mode with
indices (p,l) in the overall intensity of the resultant
beam is

I00;pl ¼ jC00;plj2: ð3Þ
Using Eqs. (1) and (3), we calculated the relative
weights of the modes ULG

01 , U
LG
02 and ULG

03 in beams
converted from a normal fundamental Gaussian
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beam, as a function of the waist parameter w of the
corresponding LG modes. The conversion to ULG

0l
is done with SPE having the phase expðil/Þ with
l ¼ 1; 2; 3. The waist parameter w of the individual
mode is expressed in units of w00; which is the waist
of the incident Gaussian beam. The results are
presented in Fig. 1. As evident, the choice of
w ¼ w00, which provides conversion efficiencies of
78.5% for l ¼ 1 and 50% for l ¼ 2 [12,15], does not
give maximal efficiency. Indeed, since the LG
modes ULG

pl with any w form a complete set, the
real conversion efficiency of ULG

00 ! ULG
0;l trans-

formation is higher, reaching 93% for l ¼ 1, 84.4%
for l ¼ 2 and 77% for l ¼ 3. Similar values were
obtained for l ¼ 1 and l ¼ 3 by numerically opti-
mizing the beam waist at the output for maximum
overlap with the input Gaussian beam [17].
As pointed out, the conversion efficiency can be

even higher if the difference in the intensity dis-
tributions of the incident and desired beams will be
closer. This can be achieved with an incident beam
whose intensity distribution is close to that of the
ULG
0l modes. It can be obtained by radially ‘‘shift-

ing’’ the normal fundamental Gaussian distribu-
tion to form an annular distribution with a
Gaussian cross-section and nearly uniform phase.
In practice, this can be realized, to a good ap-
proximation, with two axially separated axicons
for providing the needed shift parameter ro, as
shown in Fig. 2. The resultant field distribution is
approximately

Eðr;/Þ ¼ E0 expð�ðr � r0Þ2=w200ÞÞ; ð4Þ
also confirmed by numerical solutions of the
Fresnel integrals for a Gaussian beam impinging
an axicon [18].
To justify the use of the approximate formula

(4), we first performed precise numerical calcula-
tions, using Fresnel diffraction integrals [19], to
determine the intensity and phase profile of an
incident Gaussian beam after it passes a pair of
axicons, for different propagation distances and
different axicon’s base angles. Then, we calculated
the relative weight of the intensity of specific LG
modes, as well as of a shifted-Gaussian beam (4),
in the overall intensity of the final output beam.
We found that the relative weight of the pure (0, 1)
LG mode (with optimized waist) in the far field
intensity of the output beam is 97.8% (when the
slope of the axicons was 0.0042, the refractive in-
dex was 1.5 and the wavelength was 1.064 lm),
while the relative weight of the shifted-Gaussian
beam is 97.2%. These results imply that use of the
simpler ‘‘shifted-Gaussian’’ (4) would approxi-
mately lead to the desired beam.
We calculated the relative weights of the pure

ULG
0l modes for 16 l6 5 in beams, converted from

Fig. 1. The relative weights of pure LG modes in the output

beam after passing a normal Gaussian beam through SPEs, as

function of the relative waist parameter. (1) Relative weight of

pure LG (0, 1) mode after passing through expði/Þ SPE; (2)
relative weight of pure LG (0, 2) mode after passing through

expði2/Þ SPE; (3) relative weight of pure LG (0, 3) mode after

passing through expði3/Þ SPE. The horizontal axis is the waist
parameter of corresponding (0, 1), (0, 2) or (0, 3) LG mode, in

the units of the waist w00 of the incident Gaussian beam.

Fig. 2. The experimental configuration for efficient beam con-

version. The intensity distributions of the incident and outgoing

beams are drawn by solid curve.
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‘‘shifted-Gaussian’’ beam (Eq. (4)), as a function
of the relative waist parameter w=w00, for different
shifting parameter r0. The results obtained for
l ¼ 1 and l ¼ 2 are presented in Fig. 3. Fig. 3(a)
shows the relative weights of the pure LG (0, 1)
distribution in the output beam for which the
expði/Þ SPE was used. Fig. 3(b) shows the relative
weights of the pure LG (0, 2) mode in the output
beam for which the expði2/Þ SPE was exploited.
The different curves are obtained for different shift
parameters ro, which are indicated adjacent to the
curves in the units of w00. The waist parameter w
of desired pure mode is denoted on the horizontal
axis in units of w00. The optimal shift parameter ro
gives the maximal conversion efficiency and yields
0.982 w00 for ULG

0l and 1.436 w00 for ULG
02 . The

optimal w parameters of the desired mode distri-
butions are 1.3065 w00 for ULG

0l and 1.3689 w00 for
ULG
02 . As evident, the relative weights, namely,

conversion efficiencies, obtained with approximate
formula (4), can reach very high values. More
accurate calculations, based on Fresnel diffraction
integrals [19], with a Gaussian beam passing
through two axicons and SPE, yield 97.8% with
expði/Þ SPE and 95% with expði2/Þ SPE. These
values are substantially higher than those obtained
by directly converting a Gaussian beam to a helical
one, where according to Fig. 1 the conversion ef-

ficiencies are 93% with expði/Þ SPE and 84.4%
with expði2/Þ SPE.

3. Experimental procedure and results

In order to evaluate our conversion method, we
performed experiments with CW Nd-YAG laser
and pulsed Nd-YAG laser. The experimental ar-
rangement is shown in Fig. 2. The waist w00 of the
incident Gaussian beam on the first axicon was
about 3 mm; we chose this relatively large waist
radius in order to minimize the effect of imper-
fection at the tip of the axicon. Both axicons had
50 mRad base angle and no AR coating. The
distance between two axicons defines the shift
parameter r0; and was adjusted to match the radius
of the corresponding doughnut in the specific he-
lical LG mode (see Fig. 3). Two typical transmit-
tive spiral phase elements were used [11]. One,
which changes the phase of the wavefront by
expði/Þ ðl ¼ 1Þ in order to obtain the ULG

01 distri-
bution, and other, which changes the phase by
expði2/Þðl ¼ 2Þ in order to obtain the ULG

02 distri-
bution. The phase elements were fabricated from
fused silica as multilevel surface relief elements
with 32 phase levels. This high number of levels is
necessary in order to obtain diffraction efficiency

Fig. 3. The relative weights of pure LG modes in the output beam after passing a shifted-Gaussian (doughnut) beam through SPEs, as

function of the relative waist parameter. (a) Relative weight of pure LG (0, 1) mode after passing through expði/Þ SPE; (b) relative
weight of pure LG (0, 2) mode after passing through expði2/Þ SPE. The horizontal axis is the waist parameter of corresponding pure
LG mode, in the units of the waist w00 of the incident Gaussian beam. The different curves are plotted for different shifting parameter
ro, which is denoted near each curve in the units of w00.
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more than 99% [20]. The output beam intensity
distribution passed through a spherical lens
(f ¼ 101 cm) and was detected by a CCD camera
to obtain the far-field distribution, which was then
evaluated with a Spiricon beam analyzer.

The results obtained for the far-field output in-
tensity distributions are presented in Figs. 4 and 5.
Fig. 4 shows the intensity distribution when pass-
ing the incident beams through an expði/Þ SPE.
Fig. 4(a) shows a photograph of the detected in-

Fig. 4. Intensity distributions of the helical beam at the far-field when passing the incident Gaussian and shifted-Gaussian beam

through expði/Þ SPE; (a) experimental intensity distribution for a shifted-Gaussian incident beam; (b) experimental intensity cross-
sections for a normal Gaussian incident beam (curve 1) and shifted-Gaussian incident beam (curve 2); (c) calculated far-field intensity

cross-sections for a normal Gaussian (curve 1) and shifted-Gaussian (curve 2) incident beams, and pure (0, 1) LG intensity distribution

(curve 3).
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tensity distribution when passing a shifted-Gauss-
ian beam through the expði/Þ SPE. The expected
doughnut shape is clearly evident. Fig. 4(b) shows
the experimental cross-sections of the intensity
distributions when using an incident Gaussian
beam (curve 1) and an incident shifted Gaussian

beam (curve 2). Fig. 4(c) shows the corresponding
calculated intensity distributions, obtained by
Bessel–Fourier transformation of the incident
beams [19]. Also shown in Fig. 4(c) is the calculated
pure LG (0, 1) intensity distribution (curve 3). Fig.
5 shows the intensity distribution when passing the

Fig. 5. Intensity distributions of the helical beam at the far-field when passing the incident Gaussian and shifted Gaussian beam

through expði2/Þ SPE; (a): experimental intensity distribution for a shifted Gaussian incident beam; (b): experimental intensity cross-
sections for a normal Gaussian incident beam (curve 1) and shifted Gaussian incident beam (curve 2); (c): calculated far-field intensity

cross-sections for a normal Gaussian (1) and shifted Gaussian (2) incident beams, and pure (0, 2) LG intensity distribution (3).
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incident beams through an expði2/Þ SPE. Fig. 5(a)
shows a photograph of the detected intensity dis-
tribution when passing a shifted-Gaussian beam
through the expði2/Þ SPE. Again, the expected
doughnut shape is clearly evident. Fig. 5(b) shows
the experimental cross-sections of the intensity
distributions when using an incident Gaussian
beam (curve 1) and an incident shifted Gaussian
beam (curve 2). Fig. 5(c) shows the corresponding
calculated intensity distributions, obtained by
Bessel–Fourier transformation of the incident
beams [19]. Also shown in Fig. 5(c) is the calculated
pure LG (0, 2) intensity distribution (curve 3). As
evident from these results, the intensity distribu-
tions when using a shifted Gaussian incident
beams, are nearly identical to those of the pure LG
distributions. This is not the case when using a
normal Gaussian incident beam. Also, there is a
reasonable agreement between the experimental
and calculated results, albeit with some differences.
We attribute these differences to imperfect axicons
surfaces and tips, as well as to the absence of the
anti-reflection coatings. Specifically, the surface
figure of the axicons was about k at 514 nm, and the
tip imperfection had a radius of about 0.4 mm.
These deficiencies of the axicons also resulted in
secondary lobes, as seen in the experimental results.

4. Concluding remarks

We presented a method for efficiently obtaining
doughnut helical beams with high beam quality.
Indeed the far field intensity distributions of the
beams obtained by proposed method are very
close to those of corresponding pure LG modes.
Our method could be extended for obtaining both
degenerate LG and Hermite–Gaussian intensity
distributions. First, the intensity distributions of
the original and desired beams should be matched
and, second, the correct phase is introduced.
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