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‘This paper presents & method for designing optimal holographic optical clements.
The eptimization procedure is based on minimizing the mean-squared differcnce
of the propagatien vector components between {he actual output wavefronts and
the desired output wavelronts. Optimal selutions of the grating vectors for focus-
sing elements are given

INTRODUCTION

In an optical system, designed to operate with monochromatic illu-
mination sources, it is possible to replace the conventional refractive ele-
ments with holographic optical elements (HOEs){1]. Holographic elements
have several advantages over conventional elementfs, they are thinner,
more lightweight and can sometimes perform operations that are impossible
by other means. Unfortunately, they have relatively Iarge amount of
aberrations. In order to minimize such aberrations, it is necessary to
exploit optimization procedure for designing the grating function of the
holographie element. Several procedures have been proposed. These are
based on numerical iterative ray-tracing techniques [2] or on minimizing
the mean-sguared difference between the phases of the actual cutput
wavefronts and those of the desired output wavefronts [3—6]. Such
opbimization procedures do not yield an exact solution except for very
specific cases.

In this paper we present a different optimization procedure in which
the design is based on analytic ray-tracing fhat minimizes the mean-squa-
red difference of the propagation vector components between the actual
output wavefronts and the desired output wavefronts. Thus, the optimal
grating vector components of the holographic element can be solved ana-
lytically without any approximation. To illustrate our method we designed
holographic focussing elements with, as well as without, stop apertures.
The performance of the lenses was analyzed by ray-tracing and compared
with conventional spherical HOEs.

THE OPTIMIZATION PROCEDURE
A Dholographic optical element can be described as a complex diffrac-
tive grating that transformns the phase of an incoming wavefront to another
ontput phase. The phase of the output wavefront, ¢z, y), for the first
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diffracted order is given by

‘{-‘o{m: y) = Pl @, y} — q’h(m: ¥l (1)

where (i, y) is the phase of the input wavefront and §,{x, ¥) is the grat-
ing function of the HOE.

To proceed, we will now exploit the normalized propagation vectors
and grating vector of the holographic element, rather than the phases.
The normalized propagation vectors, which can be regarded as the direction
cosines of the input (R) and output (K,) rays, can be written as

A
R, = vi, and Ko =2y (2)
2 2n

and the grating vector K,, as
A Ao L
Ky=— = — 2 4+ — 3
h o vin A, "}‘AUJ: (3)

where V is the gradient operator, A, and A, are the grating spacing in @
and y directions, and A is the readout wavelength. The diffraction relation
can now be written as

B, = ke — K, (4)
I;ryu = ﬁ"i - IE”M {5)
£, =41 - R K], (6)

Note that K2 -+ K} should be less than one so as not to obtain eva-
nescent wavefronts. The goal when designing HOEs is to transfer inpub
rays into corresponding output rays that will be optimized for a given
range of input parameters. For a single specific input parameter it isrela-
tively easy to form a HOE that will yield the exact desired output rays.
However, for a range of input parameters, it is necessary to optimize the
grating vector 8o as to minimize the difference between the actual and the
desired output rays. The optimization is achieved by minimizing the
mean-squared difference between these two sets of rays.

To simplify the presentation of our optimization method, we will
describe the method in one dimensional notation. The mean-squared differ-
ence of the propagation vectors is defined as

D a.(z)
E? = S [fx,'xd(m, a)y — I%,u(m, a)1* da dua, {7)
=D mix
where the direction cosines of the output and desired rays, ﬁ',ﬁ(m, a) and

I ., a), depend on some input parameter a, and z is the space coordinate
on the HOE. The limits of integration, a,() and a,(z}, represent the upper
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and lower values of the parameter of the input waves that intercept the
HOE at apoint . For example, this input parameter could be the direction
cosine of the incoming waves, or the location of the input point sources.
The holographic element aperture is 2D. Inserting Eq. (4) into Eq. (7)
yields

D a.{z}
B2 w S [ﬁfxd(w, ay — ﬁ’fz,(w, a) + Kz(x) ] da dso. {8)
D ay(#}
The optimal grating vector component Kz (x), can be determined by
minimizing B? It is sufficient, however, o minimize a simpler integral
that we denote as e*(w,),
#a{xo}
eX{@p) = S [Eey{wgy a) — Kol my, @) + Ko 2) ] da, (9
ER]
where x, represents an arbitrary coordinate z. Differentiating (@) with
respect to K= (x,) and setting the result to zero, yields
a,yi7}
S [Ezp{ 2y, a) — Hz(2g, a) -+ Hoy{2y)] da = 0. (10)
a{%g)
Thus the optimal grating vector component will be
aglx)
!

Kz x) = S (Kefz, @) — Bafz, a)] da. (11)

{ax(w} — a{ @) A

Now, the corresponding optimal grating function can be found by using
Eg. (3), as

ba(2) = %\ES Kz z)da. (12)

For an op-axis holographic element, having circular symmetry, the
one-dimensional optimization procedure can be extended to two-dimension
by simply letting

Wz, 9) = dulr) = %fsm,.mar, (1)

where v = Y 2®+y% For an off-axis HOZ, where the off-axis angle is rela-
tively low, it is possible to obtain an approximate solution by simply
adding a linear term to the on-axis derign [4, 5],

Gal@, ) = [Ua(") Jon-sms + 20T, (14)

where o, = sin 6, and 6, is the off-axis angle,
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OPTIMAL HOLOGRAPHIC FOCUSSING ELEMENT

The operation of an on-axis focussing element is described with the
aid of the one-dimensional representation in Fig. 1. It focuses each of the
input plane waves to a point at the output plane corresponding to the
angular direction of the input wave. Figure 1(a} shows a Holographic
Focussing Element with a stop Aperture, (HFEA), and Figure 1(b) shows

OUTPUT PLANE
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STOP APERTURE
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//‘__,.,—y—“
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f ¥ e §

\ )t( fsin B;

Fig 1.-- The readout geometry of on-axis Holographic Focussing
Element. {a) With stop aperture (HFEA); (b) Without stop aper-
ture (HFE).

2 Holograpbic Focusrsing Element without a stop aperture, (HFE). The
HFEA has input stop aperture of 2W, a holographic element aperture of
2D, and it is centered along the optical axis Z. Finally, f is the distance
from the holographic element to the stop aperture and to the output plane.
The HFE has a holographic element aperture of 2W, and focuses the
incoming plane waves to a distance f.

It is convenient for focussing element design to let the input para-
meter ¢ be the direction cosine of the input plane wave so

& = o = sin B ' (15)
Consequently, the normalized propagation vector of the input rays is

Fofw, a) = Kzla) = a. (16)
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Now, an input plane wave, having a direction cosine «, must be transform-
ed into spherical wave converging to a peint «f. Thus, the direction cosi-
nes of the desired output rays become

j{-’-d(m, ay = .i{zd(m, o) = V(:_(xa;;gji)f-

Substituting K= from Eq. (16) and K=, from Bq. (17) into Eq. (11), yields

(17)

aq{v}

—1 ~{(& — of)
Eafo) = bttt e ¢ ) dat, 18
) (e @) — o)) S (V(ﬂ? — af )2 4 f* cz) (18)

ayx)

where o, z) and a,{2) are the lower and upper direction cosines of the input
plane waves that intercept the holographic element at a point .

The solution of Bq. (18) provides the final holographic grating
vector as :

a @) b ol X) 1 X 2
Ko (o) = 2 — o L —-
&) ey o) I\V(f a,(w)) +1

2
(19)
+ 2
- --V(ff‘——ai(w)) +1)
For the HEEA o2} is given by
@ - W
nl(&) e VT;“"MLW“MTVTTW":“WW, (20a)
when «,(2) > (=D + W) S —
V(=D +W)F+f
otherwise
(=D + W)
= . b
R [ e =00
oy{x) 1s given by
. x4+ W o
952(.'12) - V("m + W‘)"' +j.2? ("‘la’)
{D — W)

! when ay(r) < == Gmagy

V(D =W+
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otherwise
gy e D W) (215)
VD =Wy
For the HFE «, and «, are
2y = Gy = SI004 i, (22a)
and
Oy = Gy == 100; pay. {(22B)

As an illustration, we chose specific element parameters as f = 60mm,
W =10 mm, D = 30 mm, and the angular range of the input plane waves
for a8 B¢ pyr=— B mn=18.4". We then designed a HFEA and a HFE accord-
ing to our optimization procedure, and evaluated their performance using
ray-tracing analysis [7]. For comparison we also evaluated the perform-
ance of a holographic spherical focussing element for which

{ Koy ) Yopy = {23)

-

The criterion for evaluating the performance of the holographic elements
is the size of the focussed points at the output plane. These spot sizes
can be found by caleculating the standard deviation of the location of the
rays at the output plane ag a function of the angular directions for each
input plane wave.

The detailed results for the spot sizes as a function of the input angles
were determined by using Egs. (4), (16) and (19). The results, that do not
take into account the diffraction from the apertures, are shown in Figs. 2
and 3. Figure 2 shows the results for the HFEA configuration. As shown,
the spot sizes for the optimal HFEA are uniform over the entire range
of input angles and they are significantly smaller than those for the spheric-
al element. Figure 3 shows the results for the HFE configuration. As
shown, the spot gizes for the optimal HFE are somewhat better than the
spherical element. By comparing the results in Figs. 2 and 3, it is evident
that the performance of the optimal HFEA is superior to that of the opti-
mal HFE. The reason is that the design for the HFEA optimizes local
holograms which the input plane waves intercept. Such localized optimi-
zation is obviously better than the simultaneous optimization of the enfire
HFE, where all input plane waves intercept a single area of the element.
It should be emphasized, however, that the dimensions of the HFE are
smaller than those of the HFEA.

We also calculated the amount of distortions by subtracting the

actual (average) location of each spot from the desired location. Figure 4
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Fig. 2. — The spot size as a function of the input angle for HFEA ;
optimal (opt) and spherical (sph) pgrating functions.
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Fig. 3. — The spot size as a function of the input angle for HFE:
aptimal (opt) and spherical (sph) grating fonctions.
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shows the distortions as a function of the input angle. The distortions for
the optimal HFEA are significantly sthaller than thosé for the HFE and
the spherical elements.
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Fig. 4. — The distortion as a fupetion of the input angle [or optimal
HFEA (1), spherical HFEA (2), optimal HFE (3), and spherical HTFE
(4) grating functions.

CONCLUDING REMARKS

We have presented s new optimization procedure for designing opti-
mal HOEs which is based on analytic ray-tracing and relies on the normali-
zed propagation vector components of the waves and the grating vector.
To illastrate the optimization procedures, one-dimensional bolographic
focussing elements with and without stop apertures were designed and
evaluated. The results revealed that optimally designed elements without
stop aperture perform somewhat better than the conventional spherical
holographic elements, while those baving stop aperture are sigoificantly
betier. This is due to the fact that in the latter case, at each hologram
coordinate, the optimization is performed for a limited range of input
angles rather than for the entire range as in the former case.

Finally, the grating function for an off-axis two-dimensional focussing
clement can be determined according to Eq. (14). Such & grating funetion
can then be realized with computer generated or computer originated
holograms.

We dedicate this article to Professor Ioan Ursu with our warmest
wishes for his 60th birthday.
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