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This paper presents methods for designing and recording optimal computer-gener-
ated diffractive optical elements. The design method is based on an analytic
ray-tracing procedure for minimizing aberrations. The recording involves computer-
generated masks and multiple lithographic processes in order to form reflective and
transmissive multilevel, surface relief-phase, diffractive elements. As a result, the
elements can have high diffraction efficiencies over a broad range of incidence
angles. Even generalized diffractive elements that operate with highly uniform
diffraction efficiency and polychromatic radiation can be designed and recorded by
optimizing the shape and height of the relief gratings. To illustrate the effectiveness of
the diffractive optical elements, they have been incorporated into a number of
applications, involving visible as well as infra-red radiation. Some that deal with
coordinate transformation, beam shaping, and polarization control are briefly
reviewed
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One of the most successful and viable outgrowths of holography [1-5] involves
holographic optical elements (FIOEs) [6], known, more generally, as diffractive optical
elements (DOEs). The DOEs diffract light from a generalized grating structure
having nonuniform groove spacing. They can be formed as a thin optical element
that can provide unique functions and configurations. As such, they can replace
very complex conventional spheric and aspheric optical elements, like glass lenses
and mirrors, which work on the principles of refraction and reflection. Moreaver,
DOEs can offer optical properties that are not possible with conventional optics.

Computers have played the most important role in the development of DOEs.
Specifically, computer-generated holograms (C(Hs) can behave as very sophisticated
optical elements. The CGHs, namely synthetic holograms, represent a class of
holograms that are produced as graphical output from a digital computer [7-10}.
Given a mathematical description of a wavefront or an object represented by an
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array of points, the computer can calculate the amplitude transmittance of the
hologram and plot it by means of a laser printer or an electron-beam recorder.

To optimize the performance of DOEs, it is necessary to deal with two
independent problems separately. One involves the design of the grating functions
$0 as to minimize the aberrations, and the other involves the appropriate recording
method so as to obtain high diffraction efficiencies. In this paper, we present a
design optimization method that is suitable for a general class of DOEs. This
method is based on an analytic ray-tracing procedure that minimizes the mean-
squared difference of the propagation vector components between the actual
output wavefronts and the desired output wavefronts. The minimization yields
integral equations for the grating vector components that can be solved analyti-
cally, in some cases without any approximation. This results in a well-behaved
grating function that defines a DOE. We also present techniques for obtaining
high diffraction efficiencies. These include multilevel phase holograms, whose
efficiencies approach the ideal kinoform, blazed grating, efficiency [11], and het-
rostructure optical elements, with accurate discrete multilevel. We then extend the
design and recording methods to include computer-generated multilevel diffractive
elements, in which the phase and the amplitude of the output wavefront can be
controlled independently.

Finally, we describe how DOESs can be exploited for optical transformation and
wavefront shaping. Specific examples include annular-to-circular beam transforma-
tion, nondiffracting beams, hybrid diffractive-refractive achromats, multiple beam
grating, a novel aspheric Axilens for achieving extended focal depth while keeping
high lateral resolution, and space-variant polarization elements.

Analytic Ray-Tracing Design Procedure

In general, DOEs can have a relatively large amount of aberrations [6}. Fortu-
nately, these aberrations can be minimized by restoring to optimization procedures
when designing the grating functions of the DOEs [12-14]. In the following, we
shall present a relatively general design optimization procedure.

Typically, a DOE can be described as a diffractive grating that transforms the
phase of an incoming wavefront to another output phase. The phase of the output
wavefront, ¢,(x, y), for the first diffracted order is given by

$olx, 3) = $i(x, ¥) — ¢y{x, ¥) (1)

where ¢,(x,y) is the phase of the input wavefront and ¢,(x,y) is the grating
function of the DOE.

In our design procedure, we exploit the normalized propagation vectors and
grating vector of the DOE rather than the phases. The normalized propagation
vectors, which can be regarded as the direction cosines of the input (X)) and
output (K,) rays, can be written as '
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where V is the gradient operator, A, and A, are grating spacing in the x- and
y-directions, and A is the readout wavelength. The diffraction relations can now be
written as

~

I%.r = Kxj = Kxh (4)
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Note, K 3., + K’i should be less than one so as not to obtain evanescent wavefronts.

The goal when designing DOEs is to transfer input rays into corresponding
output rays that will be optimized for a given range of input parameters. The input
parameters could, for example, either be the direction cosines of the incoming
waves or the location of the input point sources. For a single specific input
parameter, it is relatively easy to form a DOE that will yield the exact desired
output rays. However, for a range of input parameters, it is necessary to optimize
the grating vector so as to minimize the difference between the actual and the
desired output rays. The optimization is achieved by minimizing the mean-squared
difference between these two sets of rays [15-18].

To simplify the presentation of our optimization method, we will describe the
method in one-dimensional notation, The mean-squared difference of the propaga-
tion vectors is defined as

= Kyl - KVh (5)

E? = fDD fa:(:)(ﬁfxd(.x,a) - K, (x, a))2 dadx N
-0 Jafe

where x is the space coordinate on the HOE, and the direction cosines of the
output and desired rays, K, (x, a) and K_(x, a), depend on some input parameter
a. The limits of integration, a,{x) and a,(x), represent the upper and lower values
of the parameter of the input waves that intercept the DOE at a point x,
respectively. The aperture of the DOE is 2.D. Inserting Eq. (4} into Eg. (7) yields

E? = fDD faz(x)(_f%xd(x,a) - I%_,i(x,a) + K,h(x))z dadx (8

-D “ax)

The optimal grating vector component K, (x) can be determined by minimiz-
ing E? in Eq. (8). However, because the integrand is always positive, it is sufficient
to minimize a simpler integral that we denote by e*(x;), as

a.{x 2 ~ 2
e*(x,) = f(z( ;’)(de(xu,a) - K, (xq,8) + K,h(.xu)) da ()]
4\ Xg

where x, represents an arbitrary coordinate x. Differentiating e?(x,) with respect
to K, (x,) and setting the result to zero yield the optimal grating vector component

-1
(a,(x) —a(x))-

K (x) = [P (R fx,0) - Rfx,@))da  (10)
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Since the second derivative of e? is greater than zero, the optimal grating vector
yields minimum e?. Now, the corresponding optimal grating function can be found
by using Eq. (3) to find

2w
() = — [ K (x) dx (11)

For an on-axis holographic element that has circular symmetry, it is possible fo
approximate the two-dimensional prating function by one-dimensional on-axis
design as

N a 2w
dplx, ¥) = ¢, (r) = TfK,h(r) dr (12)

where r = y/x? + y%. For an off-axis HOE, where the off-axis angle, 8, is rela-
tively low, it is possible to obtain an approximate solution by simply adding a linear
term to the on-axis design to get

2w
Qbh('x’ Y) = (¢h(r))nn~nxis + Tarx (13)

where «, = sin 8.. Finally it is possible to obtain better approximations for a
general two-dimensional grating function, but at the price of added complexity [17].
Note that for a unmique solution for a two-dimensional grating function, the
condition of V, X K, =0 must be fulfilled, where the gradient V, denotes
(2/0x)% + (d/3y)¥. This condition can be written explicitly as

oK, (x,y) i K, (x,y)
ay - ax

(14)

A vector that fulfills this condition is known as a conserving vector. For an on-axis
element that has circular symmetry, this condition is always fulfilled. However, for
off-axis elements the conservation condition is not always fulfilled, so an exact
solution for the grating function ¢,(x, y)} cannot be found. Nevertheless, it is
possible to obtain approximate solutions [17].

Optimal Diffractive Focusing Element

The operation of an on-axis diffractive focusing element is described with the aid
of the one-dimensional representation in Figure 1. Here each input plane wave
converges at the output plane to a point whose location corresponds to the angular
direction of the input wave. The diffractive focusing element (DFE) has an aperture
of 2D; a focal length f, which is the distance from the element to the stop aperture
and to the output plane; and is centered along the optical axis z. It also has an
input stop aperture of 2.

It is convenient when designing a focusing element to let the input parameter,
a, be the direction cosine of the input plane wave, so
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Figure 1. The readout geometry for an on-axis diffractive focusing element.

Consequently, the normalized propagation vector of the input rays is
R (x,a)=K.(a)=a (16)

Now, an input plane wave that has a direction cosine & must be transformed info a
spherical wave converging to a point af. Thus, the direction cosines of the desired
output rays become
~ ~ - (-x - af)
K. (x,a) =K_(x, a) = = (17)
\/( x—af) +f?

Substituting £, from Eq. (16) and K, from Eq. (17) into Eq. (10) yields

-1 ‘ara{x} —(x- Otf)
K. (x) = ~alde (18)
h (a-z(,x) — al(x)) ay(x) \/(x — a‘f)z +f2

where a,(x) and a,(x) are the lower and upper direction cosines of the input
plane waves that intercept the focusing element at a point x. The analytic solution
of Eq. (18) provides the final diffractive grating vector [16], from which, by using
Egs. (12) and (13), we find the grating function. .

To evaluate the performance of the optimally designed focusing element, we
performed a ray-tracing analysis, using Egs. (4)-(6); the parameters of the element
were chosen as f = 100 mm, W =5 mm, D = 15 mm, and 6, = 20°. For compari-
son, we also performed a ray-tracing analysis on a conventional, nonoptimized,
diffractive spherical elemental having the same parameters, for which

2
(dyx, ¥y = .,,,;(sz +y2 4+ 4+ a,x) 19)

The results of the analysis, which do not take into account the diffraction from the
aperture, are given as spot diagrams in Figure 2 for nine discrete input angles
(8,,6,). The spot diagrams for the optimized DFE are given in Figure 2a. The
spot diagrams for the spherical element are given in Figure 2b. As shown, except
for the central point, where the recording and readout geometries are identical for

the spherical element, the results for our designed element are uniformly superior.
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Figure 2. Spot diagrams for the off-axis DFE: (a) optimized grating function, (b) conven-

tional spherical grating function.
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Relatively small spot diagrams are obtained in the designed element, even at the
extreme angles.

We also calculated the amount of distortion by subtracting the actual (average)
location of each spot from the desired location; the desired focusing location of the
input plane wave at 0, is (a — a,)f. Figure 3 shows the distortion as a function of
the input angle 6, for the one-dimensional calculation. As shown, the distortions
for the optimized element are significantly smaller than those for the spherical
element.

The design method was successfully illustrated by actually recording and
experimentally testing aspheric reflective and transmissive focusing elements for a
10.6-p wavelength having diffraction limited performance over a broad range of
incidence angles [16, 17].

Efficient Multilevel Phase DOEs

Computer-generated DOEs can be formed so they behave as very sophisticated
optical elements [7-10]. For practical optical systems the DOEs must have high
diffraction efficiency. The high efficiency can be obtained by resorting to phase
rather than absorptive DOEs, where the phase DOEs are recorded as etched relief
patterns on a substrate. The recording can be performed by means of lithographic
techniques, which are used in microelectronics. When coating the relief pattern
with a reflective metallic layer, a reflective phase DOE is obtained. When the relief
pattern is in a transparent material, a transmittive phase DOE is obtained.
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Figure 3. The distortion as a function of input angle, 6,, for the optimized and spherical
grating functions.
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The diffraction efficiencies of blazed relief patterns, namely, kinoforms [11},
can reach 100%. The relief height of the kinoforms are proportional to phase
residues after modulo 2, so their variations ranges from 0 to 2. An early
fabrication process for obtaining the desired surface relief involved a single
photomask with variable optical density for controlling the etching rate of some
substrate [11, 19]. Unfortunately, such a process does not provide the needed
accuracies for controlling the graded shape and the depth of the surface relief
grooves. Consequently, the single photomask with the variable density was replaced
by a multiplicity of simpler binary photomasks, so the graded shape is approxi-
mated by multilevel binary steps [20, 21]. To ensure that high diffraction efficien-
cies are obtained, the errors due to the depth and width of the step levels must be
taken into account.

In the following, we consider the basic relations that describe the performance
of kinoforms and multilevel DOQEs. We also record and experimentally test
diffractive focusing lenses at a 10.6p wavelength and show that high diffraction
efficiencies can be reached [22-24}

Predicted Diffraction Efficiencies

The diffraction efficiency for kinoforms and multilevel elements can be calculated
by using the scalar approximation. Such an approximation is valid only for a “thin”
grating, for which the parameter O [22] is much less than one; otherwise, the
diffraction efficiency should be solved directly from the basic Maxwell equations
{25].

In the scalar region, when a diffractive element is illuminated with a normally
incident plane wave, the output wavefront will have the same form as the element,
given by

H = expliF (¢,)] 2m

where ¢, is the desired grating function and F(,) is the actual phase function of
the DOE. The grating function F(¢,) is periodic in ¢, so we can expand H in a
Fourier series. The Fourier expansion of Eq. (20) is given by

expliF(¢,)] = ), Cexplildy] (21)

[m= w2
where C, is the Ith-order coefficient of the Fourier expansion, given by

1

'~ 7

j:”exp{ff«'(qah) —ilg,lde, (22)

The diffraction efficiency, n;, of the [th diffracted order is given by

= |C1|2 Z ‘Ckiz (23)

foom — e

where, for a pure phase element, X}, _JdC =1
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The division of the desired phase ¢, to N equal steps is shown in Figure 4,
where the actual quantized phase F(¢,) is given as a function of the desired phase
¢, Solving Eq. (23) for the relevant first diffracted order ({ == 1) and substituting
the quantized phase F(¢,) from Figure 4 yield the diffraction efficiency for the
first diffracted order as a function of the number of levels N as

N m\]?
- = 2 = | —} B
m =Gl [ wsm( N)] 24)

Equation (24) indicates that, for 2-, 4-, 8-, and 16-phase quantization levels, the
diffraction efficiency will be 40.5, 81.1, 95.0, and 98.7%, respectively.

Multilevel phase DOEs can be realized with multilevel lithography, where the
surface of the DOEs needs only be etched m times in order to obtain N =27
levels. A different mask is used for each etch step, with a desired depth for each
etch being

A A
™ An2m

(25)

where A is the wavelength and An is the relief modulating refractive index change
for transmissive elements and An = 2 for reflective elements. The amplitude
transmittance for the mth mask is given by

1, = U[sin(2" = 'p,)] (26)
where

_Jt when £ = 0
U;(g)*{{) when £ <0

We now consider, by using Eq. (22), how the depth errors due to improper level
etching, and the width errors due to misalignment of the masks, affect the
diffraction efficiency [22]. Figure 5 shows the efficiency as a function of the relative
etch depth error §; for N = 2,4,8,16, and infinity levels. As shown, there is only a
slight reduction of diffraction efficiency when the depth error is less than 10%.

27

=

& ar ¥

B N &

8

——

= -

- 27
N

Figure 4. Actual quantized phase F(d,) as a

27 function of the desired phase ¢y,

é, (rodians)
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Figure 5. Diffraction efficiency n, as a function of the relative etch depth error 8, for
N = 2, 4, 8, 16, and infinity step levels.

However, as the error increases beyond 10%, the reduction in efficiency becomes
significant. The reduction of the diffraction efficiency as a function of horizontal
misalignment relative to the minimal width of the step levels, 8, is shown in Figure
6 for N = 2,4,8, 16 levels. Again, relative misalignment of less than 10% does not
cause any significant reduction in the diffraction efficiencies.

Realization Procedure and Experimental Resulls

We recorded a multilevel diffractive focusing element for a 10.6-x wavelength with
15-mm diameter and 150-mm focal length [22]. The desired relief pattern was
obtained by multilevel lithography with the use of several masks. Each mask was
first plotted as a binary computer-generated hologram in accordance with Eq. (26
using a laser scanner (Scitex Raystar, Response 300) that had a resolution capabil-
ity of approximately 10u and was then recorded onto a photographic film. The
plots were demagnified optically and recorded as chrome master masks. The
information from each mask was then transferred by contact printing and suitable
exposure onto a single crystal GaAs wafer, coated with an approximately 1-p
photoresist layer. After the photoresist was developed, the GaAs was etchied and
the remaining photoresist was removed. The etch depth of the mth mask was
determined according to Eq. (25).

We recorded a reflective focusing lens with 8 levels and a transmissive focusing
lens with 16 levels. For the reflective element, the etched GaAs wafer was
overcoated with a thin gold layer, where for the transmissive element both the
etched surface and the back planar surface were overcoated with antireflection
layers. Representative surface profilometer traces for etched sections of these
diffractive focusing lenses are presented in Figure 7. Figure 7a depicts the 8 levels
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of the reflective element, and Figure 7 depicts the 16 levels of the transmissive
element.

We experimentally evaluated the two focusing lenses by measuring their
diffraction efficiencies and focused spot sizes. The measured diffraction efficiency
for the reflective element was 88 + 1% rather than the theoretical value of 95%,
whereas for the transmissive element the measured diffraction efficiency was
87 + 1% rather than the 98.7% of the theoretical value. We attribute the loss in
efficiency to improper depths and misalignment errors as well as to insufficient loss
reduction by the antireflection coating in the transmissive lens. The focused spot
sizes for both the transmissive and reflective lenses were measured using the
scanning knife edge method. The results indicated that the spot size is 2604, which
is the expected diffraction limited size for these lenses.

Hetrostructure Multilevel Binary Optics

The fabrication processes for DOEs rely mainly on etching techniques that are
difficult to control accurately. As a result, the shape and depth of the grooves can
differ from those desired, which leads in reductions of diffraction efficiency and
poor repeatability of performance, as indicated by Figure 5. We developed a
method for forming multilevel diffractive elements that have highly accurate level
heights so as to obtain high diffraction efficiencies. The method, which we named
Hetrostructure Multilevel Binary Optics (HHMBO), relies on conventional deposition
technology, selective etching, and muitimask lithography {23]. With deposition,
rather than etching, it is possible to achieve extremely accurate control of the level
depths.

0.6 T —

0.5— -~

DIFFRACTION EFFICIENCY ’T}'i

ool 1 b4 4t b
a0 G 1 0.2 0.3 c.4 0.5

RELATIVE STEP WIDTH ERROR 8,

Figure 6. Diffraction efficiency n; as a function of the relative step width error 8, for
N =2, 4,8, and 16 step levels.
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Figure 7. Surface profilometer traces for typical etched solutions of a diffractive focusing
lens: (a) 8 levels of the reflective element and (b) 16 levels of the transmissive element.

Our process for forming HMBO is described with the aid of Figure 8. Two
materials, denoted A and B, are deposited alternately to form the multilevel
hetrostructure. Each pair of layers (A + B) forms a single level, of thickness A,
which is determined according to

A

A= NAn 27N

By exploiting multimask lithography and selective etching techniques, in which one
of the layers’ material acts as a stop, it is possible to obtain a multiplicity of levels,
each having a depth that can be controlled with high accuracy.

To illustrate the effectiveness of our process, we recorded a reflective HMBO
focusing lens for 10.6-p radiation. Only four levels (N = 4) were formed, so only
two masks were needed. Aluminum and Ni-Cr (80:20) were chosen as the alterna-
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Figure 8 Multlevel hetrostructure configura-

SUBSTRATE tion.

tive materials denoted B and A in Figure 8. We found etchants for which the Ni-Cr
acts as a stop layer for the aluminum etchant, while the aluminum serves as a stop
layer for the Ni-Cr etchant [23].

The formation procedure of the HMBO lens is illustrated in Figure 9. The first
UV exposure is shown in Figure 94; the first etching step, in Figure 9b; the second
UV exposure, in Figure 9¢; and, finally, the second etching step, in Figure 94.

syl

e

3

STt TR
AT Sy

SUBSTRATE

(c) (d)

Figure 9. The HMBO fabrication process: () the first UV exposure, (b) the first etching
step, {c) the second UV exposure, (d) the second etching step.
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Several HMBO lenses were recorded, and their diffraction efficiencies and resolu-
tion capabilities were measured. We found that the performance of all lenses was
highly repeatable, where the diffraction efficiency was close to the theoretical value
of 81.1% as given by Eq. (24) for four levels, and the resolution capability is also
the predicted diffraction limit value. By increasing the number of levels, it would of
course be possible to reach diffraction efficiencies close to 100%.

Generalized Multilevel DOEs

The diffraction efficiency of multilevel DOEs depends on the shape and the height
of every level, where for best efficiency, the level height must be varied according
to the period of the grating and the angle of the incident beam [24]. For a DOE
that has a variety of periods, such as a high numerical aperture diffractive lens, it is
not possible to arbitrarily change the height of a level for each specific period.
Consequently, the overall diffraction efficiency for such DOEs is relatively low.
Moreover, by utilizing conventional design methods, it is difficult to vary indepen-
dently the phase and the amplitude of the output wavefront, as is sometimes
necessary for some applications such as matched filtering and subdiffraction
limited focusing lenses.

We developed a new approach to design computer-generated multilevel
diffractive elements in which the phase and the amplitude of the output wavefront
can be controlled independently [26]. The approach is based on varying the local
diffraction efficiency by changing the width and the number of levels in every
period. Indeed, the diffraction efficiency of the elements can be arbitrarily con-
trolled to reach 100% over the entire element.

To illustrate how to vary independently the amplitude and phase of the
wavefront that emerges from a DOE, we designed and recorded a specific cylindri-
cal DOE for which the intensity along the line at the focus should increase linearly.
For the recording of DOE, we exploited conventional lithographic techniques with
wet chemical etching for transferring the mask data onto a GaAs substrate. The
size of the final DOE was 30 mm by 30 mm and its focal length was 240 mm. The
arrangement of the DOE together with the incident plane wave and converging
output wavefront is schematically shown in Figure 10. The intensity distribution at
the focus was measured at a 10.6-p, wavelength using a slit that was translated by a
stepper motor and the light, which passing through the slit at each location was

v DOE

. X \iocai ling
incident  light
[ ————— /
[— e
/

Figure 10. Geometry of the incident and output wavefronts from a cylindrical DOE.
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Figure 11. Measured intensity distribution along the line at the focus plane.

collected onto a thermal detector. Figure 11 shows the quantitative measurements
with the scanned slit and thermal detector. As evident, the intensity distribution
along the focus is indeed linear as expected, indicating that independent control of
the amplitude and phase of the output wavefront was indeed achieved. Deviation
from linearity at the high-intensity levels is attributed to diffraction at the edges of
the DOE.

Blazed Gratings for Polychromatic and Multidirectional Incidence Light

An important consideration for surface relief gratings is that their diffraction
efficiencies must be as high as possible. When the gratings are illuminated with a
beam at a specific wavelength and a specific angle of incidence, it is possible to
obtain 100% diffraction efficiency with properly blazed groove shapes. However,
when the beam is polychromatic or incident at orientation angles different from
those for which the blazing was designed, the diffraction efficiency is reduced
substantially. Nevertheless, it is possible to optimize the groove depth of blazed
gratings [24]. The approach is based on calculating the diffraction efficiency as a
function of the incidence angle, the wavelength, and the groove depth and then
choosing the depth that maximizes the overall diffraction efficiency over the entire
range of angles and wavelengths.
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1t is possible to obtain a diffraction efficiency of 100% with a maximal groove
depth of

A
d. .= 28
%t pcos(8,) — nycos(8,) (28)

where 8, and 6, are the angular orientations of the incident wave and that of the
diffracted wave respectively, n, is the refractive index"of the surrounding medium,
and n, is the refractive index of the grating medium for a reflective grating
n, = —n,. However, at other angles and wavelengths, the diffraction efficiency is
reduced considerably.

As an illustration, we calculated the diffraction efficiency for incidence angles
ranging from —45° to 45°. The grating period was A = 30, and the groove depth
was d = A/2 (appropriate for normal incidence). The results are shown in Figure
12, together with the results obtained from a rigorous vectorial formalism in which
TE polarization was assumed [25]. As shown, good agreement exists between the
scalar and the vectorial results, and both predict a decrease of as much as 25% in
the diffraction efficiency at the extreme angles. In accordance with our procedure
[24], the optimal groove depth for the range —45° < 6 < 45° is d,, = 0.55A.
Figure 13 shows the diffraction efficiency as a function of the angle of incidence
for a grating having the optimal groove depth. Comparing Figures 12 and 13, it is
evident that, for the grating with the optimal groove depth, the diffraction efficien-
cies are more uniform over the range of angle.

‘E ——
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Figure 12, Calculated diffraction efficiency as a function of the angle of incidence for a
blazed grating with a groove depth of 0.50A. Curve: scalar calculation; triangles: vectorial
calculation.
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Figure 13. Calculated diffraction efficiency as a function of the angle of incidence for a
blazed grating with a groove depth of 0.55A (optimal depth). Curve: scalar calculation;
triangles: vectorial calculation.

Possible Applications for DOEs

In the following, we briefly review a number of applications in which DOEs have
been successfully incorporated.

Optical Coordinate Transformation

Diffractive optical elements can perform coordinate transformations [27] that can
be exploited for distortion compensation, for angle multiplexing in optical fibers,
and for optical data processing.

An optical arrangement for realizing a general two-dimensional coordinate
transformation (x, y) — [u(x, ), v(x, y)} is shown schematically in Figure 14. A
DOE that has a grating function of ¢,(x, y) is placed adjacent to an amplitude
transmission function of f(x, y). The desired coordinate transformation F(u, ) is
obtained at some distance z away. To find the necessary grating function for the
DOE, it is most convenient to find its grating vector first using the propagation
vectors of the input and output wavefronts [28-30). This grating vector has the
form

K (x,9) = ﬁf"ﬁ“{l: (29)
v(x,y) —y

K, (5, ) = === (30)
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Figure 14, Coordinate transformation arrangement with a DOE.

where

2= [ulx, y) ~ xF + [wlx,y) —yIF +2° (31)

Then, the grating function is determined using Eqs. (12) and (13).

As an illustration, we consider how DOEs can be exploited for transforming an
annular laser beam to a uniform circular beam [31] The optical arrangement,
consisting of two DOEs, is schematically shown in Figure 15. The first DOE
converts an incident annular beam with uniform intensity and phase into a circular
beam with uniform intensity at the position of the second DOE. The second DOE
then serves as phase corrector to produce a uniform output phase. '

For the experiment, only the first DOE was recorded as a transmission surface
relief grating with 16 discrete binary levels. The recording involved four binary
masks and multiple lithographic processes. The DOE was tested with a 10.6-p
wavelength derived from a CO, laser. The results are presented in Figure 16.
Figure 16a shows the light intensity distribution at the input, and Figure 165 shows

*t
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Figare 15. Optical arrangement consisting of two diffractive optical elements for transform-
ing an annular {aser beam into a uniform one.
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{al

Figure 16. Experimental light intensity distri-
. bution for annular to uniform beam transfor-
i) mation: (a) input and (b) output.

the light intensity distribution at the output. As can be seen, the shapes of the
intensity distributions are indeed as expected.

These investigations also led to the development of a technique for forming
nondiffracting beams having essentially constant intensity along the propagation
direction [32]. Two phase-only DOEs were exploited to form the nondiffractive
beam as well as to obtain a high diffraction efficiency.

Hybrid Diffractive-Refractive Achromats

Diffractive and refractive elements can be combined to eliminate, or at least
significantly reduce, chromatic aberrations. These so-called hybrid achromats ex-
ploit the fact that the dispersion of refractive elements is opposite that of
diffractive elements, so they can cancel each other. The attractive aspect of hybrid
achromats is that, uniike wholly refractive achromats, they require only one type of
refracting material, and the curvatures of the refractive surfaces are not as
extreme.
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We investigated analytic design procedure [33] for hybrid achromats that
combine refractive and diffractive elements of the form shown in Figure 17. The
design procedure involves two separate stages. In the first stage the chromatic
aberrations are corrected for the paraxial rays, and in the second stage the
spherical aberrations are corrected by the addition of an aspherical phase function
with the diffractive element. We illustrated the design procedure by designing a
plano-convex achromat having little chromatic dispersion at 10.6-p radiation.

Multiple Beam Grating

Diffractive optics can also be exploited for producing novel binary phase retief
gratings, having characteristics that cannot be matched with conventional optics.
One example is a multiple beam grating, whose function is to produce an array of
equal intensity beams from a single input beam. The grating function in this case
corresponds to the interferenced pattern formed by an array of point sources at
infinity. By controlling the fringe location, spacing, and duty cycle of a binary phase
grating, a specified array of beams can be produced when illuminating the grating
with a single beam.

The multiple beam grating design method was exploited for designing specific
gratings that are useful for a 10.6-p wavelength [34]. Such gratings were recorded
with the aid of computer-controlled laser scanners and photolithographic tech-
nigues. Reflective and transmissive elements were formed by either etching reflec-
tive metal layers or GaAs substrates. The actual far-field intensity distribution for a
representative reflective grating that can produce 20 output beams, with beam
separation of 2 mrad, is shown in Figure 18. As measured, the root mean square
variation of the beam intensities was 5.5%.

Diffractive Axilens: High Resolution and Long Focal Depth

Optical elements that have both long focal depth as well as high lateral resolution
are needed for a variety of applications, including precision alignment and profile
measurements [35]. Conventional elements (such as spherical lenses and mirror)
cannot achieve these two goals simultaneously; high lateral resolution requires
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Diffractive Figure 17. Schematic representation of a hybrid
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Figure 18, Far-field intensity distribution for a multiple beam grating.

high numerical apertures, whereas long depth of focus requires low numerical
apertures.

We investipated special aspheric DOEs that can have arbitrarily long focal
depth as well as high lateral resolution [36]. This element essentially combines the
properties of the long focal depth of an axicon and the high energy concentration
of a conventional spherical lens, so we named it axilens. The grating of such an
axilens has the form

2ar  F*

""X" W (32)

Q‘Sh(r) w

where # is the radial coordinate of the element, A is the wavelength of the light,
and f(r) is a continuous function instead of constant for a simple lens. The
variable focal length f(r) may be the monotonic function

f(r)=f, +art (33)

where, a, b, and f, are constants. The constant a in Eq. (33} can be expressed in
terms of the desired focal depth of the element as

g = & 34)

where R is the radius of the DOE and 8z, is the focal depth. The constant b
depends on the desired intensity distribution of the central peak. For example,
b = 2 in the case of uniform intensity distribution of the central peak throughout
the focal range. The geometrical parameters and the distribution of rays for such
an axilens are shown in Figure 19. For the experiment, we derive the phase
function for a specific axilens, record it as a computer-generated hologram, and
then verify the numerical simulations experimentally [36]).
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Figure 19. Geometrical parameters and schematic distribution of rays with an input plane
wave focused by an axilens.

Computer-Generated Relief Gratings as Space-Variant Polarization Elements

Transmissive relief linear gratings of ultrahigh spatial frequencies can behave as
homogeneous birefringent materials. Sometimes, however, elements that can per-
form nonuniform, space-variant polarization are required, for example, elements
for transforming the azimuthal polarization of high-power annular CO, laser
beams into linearly polarized beams, and elements for polarization coding of the
data in optical computing [37].

We investigated a method for exploiting nonuniform relief grating for space-
variant polarization elements [38]. In this method the local direction of the gratings
determines the polarization angles, while the period of the gratings is controlled to
ensure continuity of the grating function for any desired polarization operation.
Our method was then illustrated with a specific space-variant half wave plate that
transforms a wavefront (CO, laser) with uniform linear polarization into one with
nonuniform polarization.

Concluding Remarks

We have shown that it is possible to optimize the design and recording of
diffractive optical elements so they can be operated at a variety of wavelengths
over a broad range of incidence angles and have high diffraction efficiencies. Such
elements can be incorporated into a number of applications, such as coordinate
transformations, beam shaping, and polarization control.

Our design and recording methods need not be confined to the examples cited
in this paper but could be applicable for designing and forming a wide variety of
diffractive elements. Specifically, it is possible to exploit our methods for diffractive
elements that can be incorporated in general beam profile transformations, in
optical scanners, in compact disks, and in imaging applications. Furthermore, the
methods could be extended to deal with multiclement optical systems. When
including polychromatic light sources, it is possible to compensate for chromatic
aberrations by combining diffractive and refractive optical elements.
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Finally, we would like to note that as the design and recording technologies

improve, more complex diffractive optical elements will be formed. These could
have unique properties that would not be obtainable via conventional optical
elements.
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