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A novel method for designing and recording aspheric computer generated holographic optical elements for far infrared radia-
tion has been developed. The design method is based on analytic ray-tracing procedure that exploits the minimization of the
mean-squared difference of the propagation vectors between the actual output wavefronts and the desired output wavefronts.
This minimization yields a solution for the aspheric grating vector The design method is fllustrated by recording and testing
aspheric reflective and transmissive off-axis focussing elements for 10.6 um wavelength having diffraction-timited performance
over a broad range of incidence angles.

ntroduction

“he increasing use of monochromatic radiation in complicated optical systems that require better optical
formance and certain geometrical needs has results in holographic optical elements (HOEs) becoming very
-active [ 1-31. This is particularly true for systems operating in the far infrared (IR ) radiation, say 10.6 pm.
such systems, holographic elements that are based on diffractive optics have several advantages over con-
itional elements. They are thinner, more lightweight and can perform operations that are impossible by other
ans.

“here are many applications using CO, lasers, operating at 10.6 pm wavelength, in which the HOESs can be
d [4-11]. These include laser material processing [4,5], medical surgery and infrared laser radars [6,7]
- such applications, since there are no practical recording materials for far IR, the HOEs must be formed
using indirect recording {4-12]. In practice, a computer generated mask, representing the grating function,
irst plotted with a laser scanner, then reduced in size with optical demagnification and finally recorded as
slief pattern with photolithographic techniques.

)ne of the main factors that has hindered the widespread use of diffractive elements for far IR radiation,
hat HOE's have relatively large amount of aberrations [1]. In order to minimize such aberrations, it is
essary to exploit optimization procedures for designing aspherical grating functions of the holographic ele-
nt [10,i3-19]. In this paper we present such an optimization procedure in which the design is based on
lytic ray tracing that minimizes the mean-square difference of the propagation vector components between
actual output wavefronts and the desired output wavefronts. The minimization yields integral equations
the grating vector components that can be solved analytically in some cases [10,18,19]. We shall illustrate
design and recording techniques with aspheric reflective and transmissive off-axis focussing holographic
nents for a readout wavelength of 10.6 um from the CO; laser. The reflective and transmissive elements
formed by etching either reflective metal layers or gallium arsenide substrates. These aspheric elements have
raction-limited spot sizes also for plane waves arriving from relatively large incidence angles.
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2. The general optimization procedure

A HOE is generally described as a combination of local gratings that change the direction of the incident
rays of light. Thus, in order to find the necessary grating function for the HOE, we found that it is advantageous
to first find its grating vector. This is best done by exploiting the propagation vectors of the input and output
wavefronts [19].

The normalized propagation vectors, which can be regarded as the direction cosines of the input (X;} and
output {K,) rays, can be written as

- P

A A
Koxﬁvqﬁoa Ki"ﬂvﬁbi’ (l)
and the grating vector K, as
Kh=%V¢h=Kmx‘+KmﬁzH&;£+/—%ﬁ, ()
where V is the gradient operator, ¢; and ¢, are the phases of the input and output wavefronts respectively, 4
is the readout wavelength, ¢, is the grating function of the HOE and 4. and 4, are the grating spacing in x
and y directions.

Fig. 1 shows the propagation of the rays for reflective and transmissive HOFs. For the reflective element,
shown in fig. la, the input rays change the direction according to the diffraction relation from local gratings.
For the transmissive element, shown in fig. 1b, the input rays, with normalized propagation vector K, are first
refracted by the substrate of thickness ¢, according to the refractive relation (Snell’s law), and then are dif-
fracted from the grating that is etched on the back surface. The refractive index of the substrate is denoted by
n,, where the outer refractive indices are ng and ny; typically, Ho==rp==1.

For the more general transmissive HOE, the propagation of the rays takes into account both the Snell’s re-
lations as well as the diffraction relations. The Snell's relations are written as

mK=mK,, (3)
no Ky =nm K, (4)
K.=%J1-K% K2 . (5)

The diffraction relations are

. 1
K. ==K . —— 6
w= o Ka nsz,,, (6)

-t >

Fig. 1. The propagation of rays for HOEs. (a) Reflective HOE (b} ‘Fransmissive HOE.
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K=t J1-K% K}, . (8)

Note that K2, +K§° should be less than one, so as to avoid evanescent wavefronts. For the reflective HOE, only
the diffraction relations are needed for analyzing the propagation of the rays, where ny =1n,= 1. As is evident
from the above relations, the Snell’s relations can essentially be regarded as a special case of the diffraction
relations, for which K, =K, =0.

The goal when designing the grating of the HOEs is to transfer input rays into corresponding output rays
that will be optimized for a given range of input parameters. The input parameters could, for example, be the
direction cosine of the incoming waves, or the location of the input point sources. For a single specific input
parameter it is relatively easy to form a HOE that will yield the exact desired output rays. However, for a range
of input parameters, it is necessary to optimize the grating vector 5o as (0 minirnize the difference between the
actual and the desired output rays. The optimization is achieved by minimizing the mean-squared difference
between these two sets of rays.

We shall describe the method in a two-dimensional notation. The mean-squared difference of the propa-
gation vector components of the actual and desired output rays of the local gratings includes two scalar equa-
tions, and is writien as

e (6= | [ 1Kialn 7@ b =Ruolny, @ D)) dadb, 9

where L denotes the transverse vector components £ and 7, £, a(x v, a,b) and K, o(x, ¥, a, b) are the direction
cosines of the desired and actual output rays, x and y are the space coordinates on the HOE, a and b are the
input parameters for x and y coordinates, respectively.

Using the diffraction relations (eqs. (6) and (7)), differentiating 2 (x,y) with respect to K 5 (X, ¥), setting
the result to zero, and noting that the second derivative of €2 is always positive, yields the optimal local grating
vector components,

Kon(in)=— [ 1naoatnn . 0)—mRei(x, 0,01 da [ [ daa. (10)

We now note that g3 is always positive, so the minimization results for the local gratings would be identical
to those for the whole HOE [19]. This implies that eq. (10) also represents the global optimal grating vector
companents for our desired holographic element. The optimal, two-dimensional grating function @,(x, ¥) can
now be found, using eq. {2), by integrating along some arbitrary path 1o yield
{xy)
2n 2n
(X, ) = ¢a(0,0) == Ky-dr=-r Kolx ) dx+K,(x,y)dy, (11}
[+

4

where ¢,{0, 0) can be defined as zero.
For a unique solution, the condition of V L X K,=0 must be fulfilled, where the gradient V, denotes
9#/dx+ 87/3y. This condition can be written explicitly as

3K (x, ¥) /0y =8K,, (x, y)/8x. (12)

A vector that fulfills this condition is known as a conserving vector. For an on-axis holographic element, having
circular symmetry, this condition is always fulfilled. An example of such an on-axis holographic element {kin-
oform) has been, however, developed for infrared radiation [11]. For off-axis elements, this condition is not
always fuifilled, so that an exact solution for the grating function ¢, (x, y) cannot be found. Nevertheless, it
is possible to obtain approximate solutions. For example, when the off-axis angle is relatively low, it is possible
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to approximate the grating function by simply adding a linear phase term to the on-axis design [10,19].

Another example for which an approximate solution of ¢,(x, y) can be derived, is in some cases where
K. (x, y) has weak dependence on y coordinate and K,, (x, y) has weak dependence on x coordinate over the
whole holographic element’s area; thus, these two-dimensional grating vector components can be approximated
by one-dimensional components [Ky, (x)lapp and [K, (¥) lapp. - Here, the approximation is based on mini-
mizing the mean-squared difference of the grating vector components between the optimal two-dimensional
grating vector components, given by eq. (10), and the approximate one-dimensional grating vector compo-
nents. The mean-squared difference for £ component, for example, is defined as

2002 [ ([Ka(0) lopp —Ka (%017, (13)

where K, (x, y) is given by eq. (10). Differentiating e2(x) with respect t0 [ K. (x) Japp and setting the result
1o zero, yields the approximate grating vector component

(K)o = [ Kt 0100/ [ 07 (14)

The same approximation procedure for the j component yields

[Kn(¥} ape = nyh(x.y) dx/f dx. (15)

Consequently, the two-dimensional grating function @,(x, y) can be approximated by two separated one-di-
mensional functions using eq. (2), and eqs. {(14) and (15), to yield

0n (5,92 2 [ (K (0 Lapp @t 5 [ 1K) Lan 09 (16)

A
The approximation of eq. (16) is suitable for elements with relatively large f numbers.

In the general case, when the grating vector is not a conserving vector, and the above approximations are
not sufficient, it is possible to find the optimal grating function by minimizing the mean-squared difference
between the gradients of the optimal grating function and the optimal two-dimensional grating vector
(K K, ), given by eq. (10). Specifically, the function of the mean-squared difference is now given by [20]

. z 2
e p) = U[(%%“%"Km) +(%-%K,,,)}dxdyq (17)

Minimizing e"? with respect to ¢, can be done by using the Legendre equation, yielding the Poisson-like relation
[20]

Vigy, = (2n/1) div(K,,) , (18)

where V2= /8x2+8?/0y? and div are the Laplacian and divergence operators, respectively. The optimal grat-
ing function may then be obtained by solving egs. (10) and (18). Here, the procedure for solving these equa-
tions are more complicated than those for the other examples.

3. The design of a holographic focussing element
The operation and parameters of a reflective holographic focussing element (HFE) are described with the
aid of the one-dimensional representation in fig. 2. Here each input plane wave converges at the output plane,

to a point whose location corresponds to the angular direction of the input wave. The aperture of the HFE
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Fig. 2. The readout geometry for a reflective off-axis holographic
facussing element (HFE).

extends from coordinates D, to D,, whereas the width of the input stop aperture is 2, and it extends from
coordinates W, to W,. Finally, d; and d, are the distances from the holographic element to the input stop ap-
erture and output plane, respectively.

We shall now describe the procedure for designing the HFE. For this design, it is convenient to let the input
parameters a and b, be the direction cosines of the input plane waves

a::a:sin&m, (19)
b= pB=5in8, , (20)
where &, and 8,, are ninety degrees minus the angles between the incident ray and the x and y axes respectively.
Furthermore, to simplify the presentation, we shall only deal with the &% components of the propagation vectors

and of the grating vector.
The normalized propagation vector of the input rays is

Ri(x,v,ab)=a. (21)

Now, an input plane wave, having a direction cosine ¢, must be transformed at a distance d, into a spherical
wave converging to a point (x—a,)f, where o, =sin(6,)x, (8,); is the off-axis angle ((4,),=0), and fisa
proportionality constant. Thus, the direction cosines of the desired output rays become

Z — X (af""arf)
Kulmy,a b)= JIx=(af—a.)) P+ (y— BN +ds (22)

Substituting £, from eq. (21) and K, from eq. (22) into eq. {10), and using the approximation of eq. (14),
yields

(K (%) Tapp = — IH (\/{xm (;;}[_x;fr;z{;%{l]ﬁf)z+d§ _a) dex dﬁdy/j” dadfdy. (23)

To solve eq. (23), the limits of integration must be expressed by the upper &, (x, ¥), B+(x, ¥} and lower
o, (x,y), Bi(x, ) direction cosines of the input plane waves that intercept the holographic lens at a point
(x, ¥). It is then possible to solve eq. (23) directly by numerical methods. An identical procedure is exploited
for determining the # component of the grating vector [Kp(¥) Japp., and with eq. (16), the two-dimensional
grating function for the reflective HFE, is found.

To evaluate the performance of the optimally designed reflective HFE, we performed a ray-tracing analysis
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[21], using eqs. (6)—(8); the parameters of the reflective element were chosen as (6,)=25°, (8,),=0°, W=10
mm, f=60 mm, dy=60 mm and d,=54.4 mm (di=,cos(6,))- The ranges of angles 8, and 8,, were 20° <
6., <30° and —5° <8, <5° 50 Afl,=Af, = 10°. Note that these parameters were so chosen as to enable sep-
aration between the reflected zero orders and the diffracted first order and to prevent the input stop aperture
from blocking the reflected diffraction orders. We also performed a ray-tracing analysis for 2 HOE having a
spherical grating function, given by

(B (%, ¥) Jepn = 2/ A) [ (X2 +p2 4+ )24 a,x] . (24)

The geometrical parameters from the spherical HFE was the same as ahove, except that for this element d; was
chosen so as to optimize the focussed spot sizes, i.e., =139 mm.

The results of the ray tracing analysis for the two focussing elements, which do not take into account the
diffraction from the aperture, are shown in fig. 3. They show the spot diagrams for the two elements as a func-
tion of nine discrete input angles of [y, 8,;]. As shown in fig. 3a, the small central spot diagram for the spher-
ical element is essentially ideal because the recording and readout geometries are identical. However, as the
readout input angles differ from the recording angles, the spot diagrams spread substantially. Finally, as shown
in fig. 3b, it is evident that the lens designed according 1o our optimized procedure is uniformly superior to
the spherical lens, with relatively small spot diagrams, over the entire range of input angles. These results dem-
onstrate that the spot sizes for the optimized lens, are uniformly lower than the diffraction limited size, whereas
for the spherical lens, the spot sizes are much larger than the diffraction limit (DL=2.44Af/2W 80 pum).

We also designed a transmissive HFE by using the same procedure as for the reflective HFE, but in this case,
it is necessary, first, to calculate the normalized propagation vectors of the input rays which intercept the grat-
ing, by using the refraction relations (egs. (3), (4}). The parameters of the transmissive HFE were the same
as the reflective HFE: the thickness of the element was {=3 mm. The substrate of the element was gallium
arsenide (GaAs), which is transparent to 10.6 pm radiation; therefore n,=3.27 and ng=n,=1. To evaluate
the performance of the optimally designed transmissive HFE, we performed a ray tracing analysis, using eqs.
(3)-(8). Fig. 4 shows the spot diagrams for the optimally designed transmissive HFE. The results indicate
that the spot sizes for the transmissive HFE are comparable to that of the reflective HFE, i.e. diffraction limited
spot sizes over the entire range of input angles.

1t has been shown [17], that it is also possible to obtain diffraction limited performance by using HFE with
a quadratic phase function,

[8a(x ) 1g= Qn/A) [ (/20 +y2/ 2) F e x]
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Fig 3. Spot diagrams for the reflective HFE. (a) Spherical grating function. (b} Optimized grating fenction.
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where f, and f, are constants. For such a function, however, f; and f, must be found by iterative technigue
(such as Code V). Furthermore, in order 1o ensure good optical performance for the quadratic HFE, it is nec-
essary to optimize the geometrical parameters of the optical system, such as d; and d,, in fig. 2. Finally, for
HEE with low fnumbers, the approximation of eq. (16) that was used in our illustrative design is no longer
sufficient, and it is necessary to resort to the more complicated approach (eq. (18)) {20].

4. Experimental realization and results

In order to test our optimization procedure, we recorded reflective and transmissive HFEs. The optimized
grating function was first plotied as a Lee-type [22] binary computer penerated hologram (CGH) having the

same parameters as those described in the preceding section. The amplitude transmittance of the CGH is given
by

t, = U{cos [@n(x, ¥) 1} - (25)
The term U, is a unit step function defined by
U (&)Y=1, whenlz0,

=0, whené&<0. (26)

The binary CGH was plotted with a laser scanner (Scitex Raystar, Response 300), having resolution capa-
bilities of about 10 pm, and recorded directly onto photographic film. The recorded plot was then demagnified
optically (six times) and recorded as a chrome master mask. For realizing the reflective HFE, the information
from the mask was transferred by contact printing and suitable exposure onto a glass substrate coated with
aluminum and photoresist {Shipley Microposit $1400-27). After developing the photoresist, the aluminum
was etched and the remaining photoresist was removed. Finally, in order to obtain a high reflective final ele-
ment, a thin gold layer was vacuum deposited on the etched aluminum layer. For realizing the transmissive
HFE, the information from the mask was transferred with the same photolithographic techniques as for the
reflective HFE, except that for this element, the substrate was GaAs. We used a semi-insulating GaAs substrate
of 3 mm thick, with a crystallographic orientation of (100) {t1].

Fig. 5 shows two electron microscope pictures of a typical etched section of the modulated surface of the
reflective element, each with a different magnification. As a result of the recorded and processing, we end up
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Fig. 5. Typical etched section of 2 modulated surface of the HFE.
Each white line extends over {a) 10 pm. (b) 1G0pm.

with a binary relief pattern. In the scalar approximation, an incident wavefront is multiplied by the reflectance/
transmittance H{x, y) of the HOE that is described by {5)

e e [1 (822 s ) |, 21)

where ¢, is given by eq. (25), d is the depth of the surface modulation and An=2 for the refiective element,
while An=n, —n, for the transmissive element. The relevant first diffracted order is then proportional 10 the
desired exp[igy (x, ¥) ; by setting d=4/2 An, it is possible to maximize the diffraction efficiency to be 40.5%.
Higher diffraction efficiencies, close to 100%, can be realized by using multilevel binary lithography [2,11].

The reflective and transmissive focussing elements were tested with a CO, laser at a wavelength of 10.6 pm.
The focussed spot sizes were measured for various input plane waves by using the scanning knife-edge method
[23]. Two stepper motors were used; one for moving the knife-edge and the other for changing the distance,
dou, from the holographic element to the measurement plane. Fig. 6 shows a representative result for the re-
flective element, of the relative power and relative intensity at the focussing plane, as a function of the dis-
placement of the knife edge for an input plane wave at 8,=30°, #,,=0°. The relative power is depicted by
the solid curve. Initially the knife edge does not block any of the focussing light so the total power is high, but
as it scans across the focussed spot, it blocks more of the light. The intensity distribution at the measurement
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Fig. 6. Relative power of the Hght as a function of the displace- Fig. 7. The spot size as a function of the distance, doy, between
ment of the knife edge of the focussing plane for one input plane the hologram and the measurement plane for an input plane wave
wave at 8, =30°, 8,=07,1s given by the solid curve, The cosre- at 0, =25°, 8,=0°. The experimental data are depicted by the
sponding intensity distribution of the focussed spot, is given by error bars, and the solid curve sepresents the cajculated results.

the dashed curve.

plane was found by taking the derivative of the solid curve, and the result is shown by the dashed curve. The
spot sizes were determined directly by multiplying the standard deviation of the distribution by four. The mea-
surements were performed for the entire range of input angles, 20° <0, <30°, ~5° <@, <5°, and we found
that the spot sizes were uniformly equal to the diffraction limit, Dpp. =80 pm (/=60 mm, W=10 mm), for
both reflective and transmissive HFEs.

Fig. 7 shows the spot size as a function of the distance d.,,, between the hologram and the measurement plane
for one input plane wave at =257, 8,,=0°, for the reflective element; the experimental data are given by
the error bars. Also shown (the solid curve) are the spot sizes calculated according to the Fresnel diffraction
integral {24]. For these calculations, we neglected the geometric aberrations of the focussing element. The dif-
fraction limited spot size of 80 pm is obtained when doy, 15 60 mm. As evident, the calculated and experimental
results are in good agreement.

In the realization procedure, there are several factors that can deteriorate the spot sizes of the holographic
element; the quantization of the grating function by the faser scanner, the aberrations of the optical demag-
nification system, and the photolithographic process. Note that for the focussing element described above, the
thinnest line of the grating function, contains only four demagnified pixels of the laser scanner. Nevertheless,
these factors did not significantly degrade the performance of our element, as we realized a diffraction-limited
performance for the entire range of input angles.

5. Concluding remarks

In this paper, we have shown that it is possible to design and realize aspheric reflective and transmissive off-
axis focussing elements, for far IR radiation, having a diffraction-limited performance over a broad range of
incidence angles. The design method is based on analytic ray tracing and exploits the propagation vectors of
the waves, so as to allow the realization of optimized HOES. Results of the ray tracing analysis reveal that lenses
designed according to our design method perform significantly better than spherical holographic lens. The nec-
gssary aspheric grating functions were realized by using a laser scanner and photolitographic techniques to form
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a CGH. These CGH elements were tested in the laboratory, and the experimental results are in good agreement
with our ray-tracing analysis; specifically, diffraction-limited spot sizes were obtained over a relatively large
range of input angles.
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