Achromatic phase retarder by slanted illumination
of a dielectric grating with period comparable

with the wavelength
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We discuss some properties of dielectric gratings with period comparable with the illuminating wave-
length for slanted illumination (this illumination geometry is often referred to as concical mounting).
We demonstrate the usefulness of such an illuminating geometry. We show that the threshold period
(under which only the zeroth transmission and reflection orders are nonevanescent) can be significantly
higher, thereby easing fabrication constraints, and that this illumination setup makes it possible to

design achromatic phase retarders.

Such a design, for an achromatic quarter-wave plate with \/60

uniformity of the retardation phase in the 0.47-0.63-pm wavelength interval, is demonstrated. © 2001

Optical Society of America
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1. Introduction

Phase retarders are devices that change the polariza-
tion state of a beam incident on them. This is
achieved by use of the birefringent properties of
phase retarders: The TE and the TM components of
the incoming light undergo different phase shifts, so
the relative phase difference between TE and TM
polarizations (and hence the polarization state of the
light) changes. Besides natural crystals, high-
density dielectric gratings can also exhibit birefrin-
gence properties. This phenomenon called form
birefringence! can actually be a much stronger effect
than the natural birefringence of crystals.

Two main scalar theories have been developed to
determine and analyze the diffraction from dielectric
gratings. One is the effective medium theory
(EMT),! which is suitable for gratings whose period A
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is much smaller than the illuminating wavelength A.
The other is the scalar diffraction theory,2 which is
suitable for gratings whose period A is much larger
than the illuminating wavelength \. Specifically,
for the regime of A << \ and perpendicular incidence,
EMT accurately describes the intensities of the trans-
mitted and the reflected zero-order diffractions for
both TE and TM incoming polarizations, as well as
the phase difference between the TE and the TM
polarizations. Alternatively, for the opposite regime
of A =>> \, the scalar diffraction theory is sufficient for
determining all the diffraction orders. However, in
the intermediate regime, when A ~ \, EMT and sca-
lar diffraction become inaccurate. The second-order
EMT,? which includes a second-order correction of
the finite ratio A/\, has somewhat improved accuracy
for A = \/2 but eventually also fails as A approaches
N. Thus in general it is necessary to resort to rigor-
ous vectorial calculations.*

In this paper we investigate the polarization prop-
erties of dielectric gratings at the A ~ \ regime and
show how they can be effectively exploited for phase-
retardation applications. Such gratings have sev-
eral attractive features when used as phase
retarders. First, their relatively low spatial resolu-
tion alleviates the fabrication problems of surface-
relief dielectric gratings, which are of particular
significance with visible and UV illuminations. Sec-
ond, their effective birefringence is relatively
strong—it can even be stronger than that of A << \
gratings—thereby increasing the attainable phase



Fig. 1.

Illuminating geometry of a dielectric grating.

retardation. Finally, their wavelength sensitivity is
relatively low, so they can be exploited as a phase
retarder over a broad range of wavelengths. How-
ever, such gratings can have higher diffraction or-
ders, which can result in the reduction and strong
variations of the intensity of transmitted zero-order
diffraction. We show, however, that by means of
optimizing the grating period and thickness of the
grating, and the illumination geometry, these effects
can largely be suppressed. For our investigations
we use rigorous coupled-wave analysis (RCWA)> and
the results from EMT for dielectric gratings in the A
<< \ regime.

2. Basic Relations

For any dielectric grating and arbitrary incidence
illumination geometry, as depicted in Fig. 1, the
threshold period under which only the transmitted
and the reflected zero-order diffractions are noneva-
nescent is*

A
th = . . X
n;sin 0 cos & + (ny — ni® sin® 6 sin® ¢

A )1/2’

(1)

where ¢ is the azimuth angle, 6 is the angle of inci-
dence; and n; and ny; are the refractive indices of the
superstrate and the substrate media, respectively.
As shown in Fig. 1, the TE polarization is perpendic-
ular to the plane of incidence and the TM polarization
lies in the plane of incidence.

Equation (1) indicates that for ¢ = 90° and suffi-
ciently large 6 even gratings of A > A can behave like
zero-order (or subwavelength) gratings; the threshold
period Ay, has its maximum at ¢ = 90°, 6 = 90°.
However, for large 6 (typically for 6 > 70°), the effi-
ciency of the zero-order transmitted wave is signifi-
cantly reduced by Fresnel reflection at the interfaces.
Hence a trade-off must be reached between the max-

imum angle of incidence (in terms of efficiency) and
the minimum period (in terms of fabrication ease).

According to EMT, for binary dielectric gratings
with A << \ and normal incidence illumination (i.e.,
8 = 0°), the effective refractive indices nrp and nqy
for the TE and the TM polarizations are*

nm = [fn+ (1 - f)n*]"% (2)

noy = [fn272 + (1 - f)n172]71/2, (3)

where f'is the duty cycle of the grating and n; and n,
are the refractive indices of the two materials com-
posing the grating (with surface relief gratings n, =
ny and ny = ny). A binary A << \ grating of thick-
ness ¢ can thereby be treated as a homogeneous bi-
refringent layer of the same thickness. With the
simple model of multiple reflections between the two
boundaries of a homogeneous layer (similar to those
of a Fabry—Perot resonator) and the Fresnel formulas
for transmission and reflection coefficients at the
superstrate—layer and layer—substrate interfaces,
the phase difference between the transmitted TE and
TM polarizations is found, for normal illumination, to

be
2m
AL‘J = arg nTE(nI + nH)COS T nTEt
. o . [2m
+ l(nInH + nrg )Sll’l T nTEt
21
— arg| noy(n; + nycos T Nt

. o . [2m
+ L(nInH + nry )Sln T nmt , (4)

where i is the imaginary unit.

Next, using Eq. (4), we calculated Ay as a function
of grating thickness # and compared the results with
those from RCWA. The binary grating and illumi-
nation parameters had the following values: \ =
0.6328 pm, n,; = n; = 1, and n, = ny; = 1.64 (the index
of refraction of the Microposit S1800 photoresist se-
ries at A = 0.6328 pm), f = 0.5, and 6 = 0° (¢ is
undefined). The results are presented in Fig. 2.
These show Ay as a function of grating thickness
(calculated from EMT and RCWA) for three different
values of A; the EMT does not depend on A/A and is
thus calculated only once. The results reveal an ex-
cellent agreement between EMT and RCWA for very
small A (0.1\). The results also show that a reason-
able agreement is obtained for A = 0.6\, which—
although already in the A ~ \ regime—is still a zero-
order grating, according to Eq. (1). The oscillations
around a linear line [which is expected from the sim-
plified relation Ay o« (npgy — noy)t] result from mul-
tiple reflection from the grating boundaries.
Finally, the results for A = 0.9\ show large deviations
between RCWA and EMT, as are indeed expected,
since in this case a first-order diffraction wave is
allowed to propagate as a substrate mode.
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Fig. 2. Comparison between zero-order EMT and RCWA for grat-

ings with different grating periods. Ay as a function of grating

thickness.

Several important features emerge from the re-
sults of Fig. 2. First, form birefringence still exists,
with the same order of magnitude as in the A << A
case. Moreover, for some parameters (e.g., ¢ ~
0.65\), the phase difference between the zero orders
of the TE and the TM polarizations is nearly twice as
large as in the A << \ regime, which can reduce the
usually needed large grating depths and thereby ease
fabrication. It must be noted, however, that in the
A ~ \ regime there may be a reduction of efficiency in
the zero-order diffraction intensity, owing to the ad-
dition of higher diffraction orders. In this particular
case, the throughput light efficiency for zero-order
diffraction is only ~50% (both for TE and TM) at ¢ ~
0.65\, and the deviations from linearity are quite
large. We also calculated Ay as a function of thick-
ness, using the second-order EMT, whose results in
terms of diffraction efficiency are shown to be in good
agreement with RCWA even near the A ~ \ regime.®
We found, however, that in terms of Ay, the results of
the second-order EMT significantly deviate from
those of RCWA, just as those from the zero-order
EMT do for A = 0.9\.

3. Achromatic Phase Retarder

When a dielectric grating with A << A is illuminated
with a plane wave at normal incidence, a simple ex-
pression to determine Ay is

AP(N, t) = (21/N)(nre — nowt. (5)

Equation (5) is only an approximation of Eq. (4), be-
cause it neglects multiple reflections inside the grat-
ing region. Nevertheless, this simplified expression
can be helpful in providing an intuitive picture, even
for gratings illuminated at arbitrary incidence angles
and having periods comparable with the illuminating
wavelength. The expression is particularly useful
when we consider the results from higher-order EMT,
which showed that nyr — nqy is approximately lin-
early proportional to A in the A ~ \ regime.* This
implies, according to Eq. (5), that Ay could be inde-
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Fig. 3. Ay as a function of grating thickness, for A = 0.47, 0.55,

and 0.67 pm and for different grating periods. The illumination

parameters are & = 90°, 6 = 60°.

pendent of wavelength. Thus it may be possible to
design a dielectric grating whose period is compara-
ble with the wavelength (A ~ \), which will behave as
an achromatic phase retarder over a relatively broad
range of wavelengths. In the design, care must be
taken to ensure that the usual higher-order diffrac-
tions, in gratings with A ~ \, are low so as to obtain
a reasonable transmitted zero-order diffraction in-
tensity.

When designing a dielectric grating for the achro-
matic phase retarder, one has several free parame-
ters available: grating shape, ¢, nq, ny, ny, ny, A, and
the illumination angles ¢ and 6. Some of these,
however, are set by available grating recording ma-
terials and practical recording and illumination ge-
ometries. We found that the optimal illumination
geometry is ¢ = 90° and 6 # 0, which, according to Eq.
(1), yields a high Ay. With this geometry, even if
A > Ay, the efficiency of the inherent higher diffrac-
tion orders can be significantly lower than that of the
transmitted zero-order diffraction. For the design
procedure, first, the desired wavelength interval and
Ay have to be specified. Then, by iteratively chang-
ing the available free parameters, we can approxi-
mate the specifications to a high degree of precision.

To illustrate our approach, we designed and ana-
lyzed a phase retarder for the wavelength interval
0.47-0.63 pm and for Ay = 90° (i.e., achromatic
quarter-wave plate). We assumed that the grating
shape is sinusoidal, with n, = 1, n, = 1.64. The free
parameters in this case were t, A, and 6. With the
iterative procedure we obtained the following values
for these parameters: ¢ = 1.29 pm, A = 0.56 pum,
and 6 = 60°. We calculated the phase retardation
Ay as a function of grating thickness for such a phase
retarder. The results, along with results for a phase
retarder of a grating with A << \, are shown in Fig.
3; in both cases the illumination geometry was 6 =
60° and ¢ = 90°. As expected, in accordance with
Eq. (5), Ay for the phase retarder with the grating of
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Fig. 4. Achromatic phase retarder. Ay as a function of illumi-

nation wavelength.

A << \ has different slopes for different wavelengths.
However, for the phase retarder that was designed
according to our procedure with a grating of A ~ \
and the specific illumination geometry, Ay as a func-
tion of grating thickness is essentially the same for all
the wavelengths.

As indicated in Fig. 3, a desired phase retardation
Ays can be obtained by a proper choice of the grating
thickness. For example, a quarter-wave plate of
Ay = 90° corresponds to £ = 1.29 pm. We can obtain
phase retarders with other constant phase-
retardation values over the same wavelength inter-
val simply by choosing other values for ¢.

Figure 4 shows the phase retardation Ay as a func-
tion of wavelength, for a phase retarder designed
according to our procedure. The grating thickness ¢
was 1.29 pm. For the specified wavelength interval
0.47-0.63 pm the deviation of Ay from 90° is +0.85°.
For comparison we also include the results for a
phase retarder with a sinusoidal grating of the same
parameters, except that A = 0.01 pm and ¢ = 0.79 pm
(so that Ay = 90° at the middle of the wavelength
interval). This element with A << \ behaves in ac-
cordance with EMT, where Ay as a function of wave-
length is simply a hyperbola. The deviation of Ays
from 90° is approximately +13°, much larger than for
our designed phase retarder, where A = 0.56 pm.

Figure 5 shows the efficiency of the transmitted
zero-order diffraction as a function of wavelength for
both TE and TM polarizations. These results were
obtained for the phase retarder designed according to
our procedure and analyzed with RCWA. The aver-
age TE efficiency is 0.87 with a 6% uniformity over
the specified wavelength interval, and the average
TM efficiency is 0.91, with a 7% uniformity. The
corresponding amplitude transmission coefficients
are 0.935 for the TE polarization and 0.96 for the TM
polarization, with uniformities of 2.8% and 3.5%, re-
spectively. These results indicate that, despite the
existence of additional diffraction orders, it is possi-
ble to obtain a fairly high and uniform efficiency in
the zero order. The difference in average transmis-
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Fig. 5. Achromatic phase retarder. TE and TM efficiencies as a

function of illumination wavelength.

sion coefficients for the TE and the TM polarizations
does not affect the purity of the outcoming circular
polarization, provided that the incoming linear polar-
ization is slightly rotated from 45° to the principal
axis of the quarter-wave plate (by ~0.8° in our case).
However, the nonuniformity (as a function of wave-
length) of the TE and the TM transmissions is trans-
lated into an additional error in the retardation
accuracy if the element is used in white light. Ac-
cording to our calculations, the combined effect of
nonuniformity in amplitude transmission and the de-
viation of Ays from 90° together result in an analogous
average retardation error of 5.9° for our element in
the 0.47-0.63-pm wavelength range. This corre-
sponds to \/60 (and polarization energy purity of
99.9993%), which is close to the specification of A /100
for a high-quality commercial achromatic wave
plate.”

Note that when the achromatic phase retarder is
used with one wavelength at a time (e.g., with a
tunable laser) instead of a white-light source then the
nonuniformity of the transmission coefficients can be
compensated for as explained above, and the accu-
racy of the quarter-wave plate is again +0.85°, which
corresponds to +=\/420.

We also note that the idea of using gratings in
conical mountings as polarization elements has al-
ready been proposed®® but only for a single wave-
length, not as achromatic elements.

4. Concluding Remarks

Given the large number of free parameters that are
available in our design procedure, it is possible to
obtain achromatic phase retarders both for the visible
range and for wavelength regions outside the visible
spectrum. For example, by means of increasing n,
or t, phase retarders for IR-wavelength ranges can be
designed. It must be noted, however, that the in-
crease in n, usually results in higher losses, owing to
higher Fresnel reflections at the interfaces, and the
increase in ¢ often makes fabrication more difficult.
Yet, because our phase retarders use gratings in the
A ~ X\ regime, the fabrication requirements are gen-
erally much less stringent in terms of aspect ratio
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(fA/t) than in the case of phase retarders using grat-
ings in the A << N regime. Moreover, the use of
gratings with A ~ \ may lead to the reduction of the
angular sensitivity of phase retarders and possibly to
reduce the wavelength and angular sensitivity of an-
tireflection coatings.
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