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1. Tiling rule of antenna configurations 

Below, we provide detailed illustrations of the anisotropic antenna tiling rule. 

Isotropic antennas were embedded at the middle of each edge of the Penrose tiling 

[Fig. S1(a)] to compose an isotropic quasicrystal metasurface (QCM.) Then, an 

anisotropic QCM was introduced by replacing the isotropic antennas with their 

anisotropic counterparts, which are oriented along the tiling grid [Fig. S1(b)]. 

 

 

 

 

 

 

 

FIG. S1. Tiling rule of isotropic (a) and anisotropic (b) antenna configurations in 

QCM. Blue grid depicts the Penrose tiling. θ  stands for the antenna orientation. 

 

2. Local modes of the QCMs 

In order to characterize the thermal emission from the metasurfaces, we distinguish 

between the collective and local mode excitations. The latter are modes arising as a 

result of the scattering from an individual subwavelength particle (nanoantenna) and 

are discussed below, while the former are modes obtained from the coherent 

collective scattering from nanoantennas of the QCM and governed by the momentum-

matching condition discussed in the manuscript. Furthermore, these collective modes 

are the signature of surface phonon polaritons propagating along the SiC metasurface, 

thus providing such a coherent coupling of the localized modes into radiative modes. 

(a) (b) 
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FIG. S2. (a,b) Calculated extinction cross sections of an oblate spheroid and 

ellipsoidal particles, respectively. The particles attained for the polarization along the 

semi axes 1a  (blue), 2a  (purple) and 3a  (green) exhibit corresponding resonances 

(blue, purple and green curves). The alternating blue-purple line in (a) denotes 

responses along both 1a  and 2a  axes. 

 

Further, we provide an analysis of the local modes for isotropic and 

anisotropic antennas observed at −1
1  = cm885c/2πω  in Fig. 1(c) and at 850c/22,  =1 πω  

and 887 cm-1 in Fig. 1(d) of the manuscript. By use of the modified long wavelength 

approximation (MLWA) [see Ref. S1], we determine the extinction cross section 

( )iiext kkC 0
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4 Im6/ απα +=  of spherically and elliptically shaped voids embedded in 

a SiC substrate. Here, i0α  stands for the polarizability in the MLWA regime of the ith 

semi axis of the ellipsoid, while k  is the normal incidence wavenumber. The 

correspondent polarizability is given as 
132

0 64
1

−

⎟⎟
⎠

⎞
⎜⎜
⎝

⎛
−−=

π
α

π
ααα i

i

i
ii

ik
a

k , where ia  

( 3,2,1=i ) are the semi axes of the ellipsoid. The calculated resonant frequencies 

1
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1
1 cm8592/ −=cMLWA πω  and   = −1

2 cm883 c/2πωMLWA  for an ellipsoidal  particle [Fig. 

S2(b)] are in good agreement with  the experiment. The resonances exhibit a strong 

linear polarization along the direction of the small axes of the antenna [ 3a  in Fig. 

S2(a) and 1a , 3a  in Fig. S2(b)], whereas for the long axes [ 1a , 2a  in Fig. S2(a) and 

2a  in Fig. S2(b)], the polarization is negligible. Such a polarization anisotropy is 

essential for the geometric phase accumulation in the anisotropic QCM. 

 

3 (a). Transmission spectra of SPP-based QCMs 

The transmission spectra of the QCMs based on nanoantennas in thin metal film were 

additionally studied in the visible spectrum via the excitation of SPPs. The QCMs 

with nm550=d , sandwiched between a glass substrate and a glass slide on the top, 

were normally illuminated by a supercontinuum light source (Fianium SC-450-4) and 

the zero-order transmitted light was collected by a spectrometer. The SPPs are 

resonantly excited when the momentum conservation is fulfilled; thus, the 

correspondent SPPk  matches the relevant circle of QC reciprocal vectors at different 

wavelengths. The measured transmission spectrum of the isotropic QCM [Fig. S3 top 

spectrum] exhibits a single resonance dip at 700 nm corresponding to the reciprocal 

vector set 1G . The anisotropic QC configuration reveals an additional resonant dip at 

a longer wavelength of 810 nm corresponding to the reciprocal vector set 2G  [Fig. S3 

bottom spectrum]. Note that this result purely arises from the geometric phase (See 

section 3(b)). The obtained dip wavelengths are in good agreement with the 

theoretical values 690/)/(2 2,121212,1 =+= Gεεεεπλ  and 810 nm, where 2,1ε  stand 

for the glass and gold permittivity, respectively. Moreover, the inset of Fig. S3 shows 

the calculated finite difference time domain (FDTD) transmission spectra confirming 



 5

600 800 1000
0

1

2

3

Tr
an

sm
is

si
on

 (a
.u

)

Wavelength (nm)

600 700 800 900
Wavelength (nm)

the experimental results. The three additional modes with smaller wavevectors 5,4,3G  

cannot be detected within the restricted experimental spectral window and for this 

reason do not appear in Fig. S3. 

 

 

FIG. S3. Measured and calculated (inset) transmission spectra through the isotropic 

(top curve) and the anisotropic (bottom curve) SPP-based QCMs with extent of 40-

by-40-μm2. Apertures with the same dimensions as in Figs. 2(a) and 2(b) were 

perforated in a 250 nm thick Au film. 

 

3(b). Comparison between modes of homogenous anisotropic and 

inhomogeneous anisotropic QCMs 

We performed finite difference time domain (FDTD) simulations to compare the 

modes of the homogenous and inhomogenous orientation of nanoantennas in the 

anisotropic QCMs. The modes were evaluated by examining the antiresonance dips in 

the reflection spectrum. These dips result from the absorption to surface plasmon 

polaritons waves. Two quasicrystal structures having the same nanoantennas positions 

and different sets of orientations were simulated. The nanoantennas in the first 

structure were oriented along the tiling grid [see Fig. S4(b)], while the nanoantennas 

in the second structure have uniform orientation [see Fig. S4(a)]. Normal illumination 

with circularly polarized light on the inhomogeneous QCM reveals a resonance dip at 
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~700 nm, corresponding to the reciprocal vectors of the QCM, and two additional 

resonant dips at longer wavelengths of 810 nm and 950 nm, that correspond to the 

aperiodic orientations of the antennas [see black curve in Fig. S4(c)]. We conducted 

reflection simulations to find the spectrum of homogenous QCM, which is illuminated 

by circularly polarized light. Such an illumination reveals a broadband absorption 

(~150 nm), which is a signature of the local resonance of the nanoantennas and is not 

related to the collective modes [Fig. S4(c) blue curve]. 

 

 

 

 

 

 

 

 

 

 

FIG. S4. Simulated reflection spectra of homogenous anisotropic QCM and 

inhomogeneous anisotropic QCM. (a,b) The simulated quasicrystal structures with 

nanoantennas oriented along the tiling grid (b) and in fixed orientation (a). The inset 

depicts the illuminated light polarization of each configuration. (c) The simulated 

reflection. The black arrows correspond to the absorption modes of the 

inhomogeneous QCM, while the blue curve denotes the reflection spectrum of the 

homogeneous QCM. (d) Five-level quantized geometric phase of the inhomogeneous 
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anisotropic QCM. Each color level corresponds to the same phase pickup (attached 

value at the left) from the equally oriented antennas. 

 

4. Far-field radiation from the anisotropic QCM 

In order to characterize the scattering field from the anisotropic QCM, we consider a 

single anisotropic antenna as a radiating dipole ( )yx pp θθθ ,=p  located at r  in the x -

y  interface between dielectric ( 0>z ) and polar ( 0<z ) media and oriented with an 

angle θ  with respect to x  axis (see Fig. S5). 

It has been shown that the scattering field in the radiation zone can be written 

as [see Ref. S2] 
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where 
λ
π2=k , m̂  is the unit vector in the direction of the point of observation D 

and R  is the vector directing to this point from the origin O. By assuming that 

1>>kR , we obtain that zm ˆˆ ≈ , thus Eq. S1 takes the form 
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We express the dipole moment of an anisotropic antenna exited by an incident light 

inE  via the polarizability tensor θαt  as 

 inEp θθ αt= . (S3) 
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FIG. S5. Schematic setup of the radiating dipole. 

 

The polarizability tensor of the nanoantenna, oriented with its long axis parallel to the 

x  direction, can be written as 

 ⎟⎟
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while the polarizability tensor of the nanoantenna oriented at an angle θ  is given by 
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This transformation yields that 
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For convenience, we adopt the Dirac bra-ket notation and convert θαt  to the 

helicity basis in which ⎟⎟
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basis, the polarizability is described by the matrix 1−= UU θθ αα tt h , where 
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1U  is a unitary conversion matrix. The explicit calculation yields that 
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Thus, for an incident plane wave with an arbitrary polarization inE , we find that the 

resulting field is 

 ( )−+
−
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i
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out EeEeEeeE 22rk
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The contribution from all nanoantennas located at nr  and with corresponding 

orientation angles ( )nθ r  in the anisotropic QCM results in the total field distribution 

which is given by 

 ( ) ( ) ( )( )2 2n nn

i
i iitotal

out in in in
n

eE e E e E e Eθ θσ σ σ σ
⋅

−− ⋅
− + + −∝ + +∑
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 (S9) 

or alternatively, 

 ( ) −+−+−+ ++∝ σσσσ ininin
total
out EfEfEfE 0k . (S10) 

Here, ( )
⎭
⎬
⎫

⎩
⎨
⎧ −= ∑

n
nFf rrδˆ

0  and ( ) ( )2ˆ ni
n

n
f F e θδ ±

±
⎧ ⎫= −⎨ ⎬
⎩ ⎭
∑ rr r . Equation S10 shows 

that ( )ktotal
outE  comprises three polarization orders: the inE , +σ  and −σ . The 

inE  polarization order maintains the polarization and phase of the incident beam, 

whereas the phases of ±σ  polarization orders is equal to θ2± , respectively. Note 

that the phase modification of the +σ  and −σ  polarization orders results solely 

from local changes in polarization and is therefore, geometric in nature. 
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FIG. S6. (a,b) Calculated 2
0f  (a) and 2f±  (b) corresponding to the first term 

(incident helicity component) and the second term (spin-flip component) of Eqs. S11 

and S12. (c-f) Measured diffraction patterns of the two helicity components of the 

anisotropic QCM for incident spin state +σ  (c,d) and incident spin state σ − (e,f). 

Measured diffraction patterns of the incident helicity component (c,e) and the spin-

flip component (d,f). ±σ  in the figures denote the spin-projected states of the 

measured diffracted waves. Note that the examined QCM was the same as presented 

in Fig. 2(b) with the same experimental parameters. 
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For the incident spin state of +σ , Eq. S10 can be expressed as 

 ( ) −−+ +∝+ σσσ ffEtotal 0k , (S11) 

while for the incident spin state of −σ , Eq. S10 is given by 

 ( ) ++− +∝− σσσ ffEtotal 0k . (S12) 

The presented model exhibits a good agreement with the observation of the field 

scattered from the anisotropic QCMs. The first term of Eqs. S11 and S12 ushers in the 

diffraction pattern [Fig. S6(a)] of the field with the incident helicity component, and it 

confirms the measured single circle of modes [Fig. 2(f) and Figs. S6(c) and S6(e)]. 

The emerging spin-flip component leads to the calculated diffraction pattern [Fig. 

S6(b)] which is the signature of the geometric phase modes manifested by the five 

circles, confirming the measured diffractions for the incident spin states of +σ  [Fig. 

2(h) and Fig. S6(d)] and −σ  [Fig. S6(f)]. 

 

5. Optical spin-Hall effect for different outcomes of the randomization process 

For a random selection of half of the anisotropic nanoantennas in the QCMs, we 

obtained a part of the QCM for which the orientations would be distorted. By the 

repeated random process of the antenna orientations configuration, we achieved an 

outcome, where spin-dependent modes are obtained on the circle of radius 3G  [Figs. 

S7(a), S7(b) and S7(e)]. This spin-dependent diffraction pattern demonstrates the 

optical spin-Hall effect (OSHE) in the perturbed anisotropic QCM. The QCM was 

illuminated with right and left circularly polarized light at the wavelength of 

nm750=λ  and the OSHE was observed experimentally [Figs. S7(c)-S7(e)]. The 
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efficiency of the OSHE becomes significant when half of the antenna defects are 

introduced in the structure [Fig. S7 (f)].  

 

 

 

 

 

 

 

 

 

 

 

FIG. S7. (a-d) Calculated (a,b) and measured (c,d) diffraction patterns of the QCM 

with the geometric phase defects. The patterns reveal the spin-dependent modes, 

located on the 3G  circle, for −σ  (a,c) and +σ  (b,d) illuminations, respectively. Blue 

and red guiding rings highlight the location of the spin-dependent modes in the 

reciprocal space for each helicity ±σ . (e) Azimuthal cross sections of measured (red 

and blue) and calculated (black) intensities for ±σ  illuminations. The intensities were 

measured along the yellow circle in (b). In this polar representation, the azimuthal 

angle is given in degrees and the intensity is on a linear scale. (f) Dependence of the 

OSHE efficiency OSHEη  on the normalized average distance between defects da /* . 

The green curve corresponds to the calculated efficiency for the specific 

randomization process and the experimental points are denoted by purple crosses. 
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